Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids

Abstract

Although the functional interaction between ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s) is essential in ubiquitin (Ub) signalling, the criteria that define an active E2–E3 pair are not well established. The human E2 UBCH7 (also known as UBE2L3) shows broad specificity for HECT-type E3s1, but often fails to function with RING E3s in vitro despite forming specific complexes2,3,4. Structural comparisons of inactive UBCH7–RING complexes with active UBCH5–RING complexes reveal no defining differences3,4, highlighting a gap in our understanding of Ub transfer. Here we show that, unlike many E2s that transfer Ub with RINGs, UBCH7 lacks intrinsic, E3-independent reactivity with lysine, explaining its preference for HECTs. Despite lacking lysine reactivity, UBCH7 exhibits activity with the RING-in-between-RING (RBR) family of E3s that includes parkin (also known as PARK2) and human homologue of ariadne (HHARI; also known as ARIH1)5,6. Found in all eukaryotes7, RBRs regulate processes such as translation8 and immune signalling9. RBRs contain a canonical C3HC4-type RING, followed by two conserved Cys/His-rich Zn2+-binding domains, in-between-RING (IBR) and RING2 domains, which together define this E3 family7. We show that RBRs function like RING/HECT hybrids: they bind E2s via a RING domain, but transfer Ub through an obligate thioester-linked Ub (denoted Ub), requiring a conserved cysteine residue in RING2. Our results define the functional cadre of E3s for UBCH7, an E2 involved in cell proliferation10 and immune function11, and indicate a novel mechanism for an entire class of E3s.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UBCH7 does not react with free lysine.
Figure 2: Lysine reactivity is multifactorial.
Figure 3: RBR E3s function via a HECT-like mechanism.
Figure 4: Cysteine C357 is the active site of HHARI.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Anan, T. et al. Human ubiqutin-protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin-conjugating enzymes. Genes Cells 3, 751–763 (1998)

    Article  CAS  Google Scholar 

  2. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl–UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000)

    Article  CAS  Google Scholar 

  3. Brzovic, P. S. et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl Acad. Sci. USA 100, 5646–5651 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Huang, A. et al. E2–c-Cbl recognition is necessary but not sufficent for ubiquitination activity. J. Mol. Biol. 385, 507–519 (2009)

    Article  CAS  Google Scholar 

  5. Capili, A. D., Edghill, E. L., Wu, K. & Borden, K. Structure of the C-terminal RING finger from a RING-IBR-RING/TRIAD motif reveals a novel zinc-binding domain distinct from a RING. J. Mol. Biol. 340, 1117–1129 (2004)

    Article  CAS  Google Scholar 

  6. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000)

    Article  CAS  Google Scholar 

  7. Marin, I., Lucas, J. I., Gradilla, A. C. & Ferrus, A. Parkin and relatives: the RBR family of ubiquitin ligases. Physiol. Genomics 17, 253–263 (2004)

    Article  CAS  Google Scholar 

  8. Tan, N. G. et al. Human homologue of ariadne promotes the ubiquitylation of translation initiation factor 4E homologous protein, 4EHP. FEBS Lett. 554, 501–504 (2003)

    Article  CAS  Google Scholar 

  9. Tokunaga, F. et al. Involvement of linear polyubuitylation of NEMO in NF-κB activation. Nature Cell Biol. 11, 123–132 (2009)

    Article  CAS  Google Scholar 

  10. Whitcomb, E. A., Dudek, E. J., Liu, Q. & Taylor, A. Novel control of S phase of the cell cycle by ubiquitin-conjugating enzyme H7. Mol. Biol. Cell 20, 1–9 (2009)

    Article  CAS  Google Scholar 

  11. Fransen, K. et al. Analysis of SNPs with an effect on gene expression identifies UBE2L3 and BCL3 as potential new risk genes for Crohn’s disease. Hum. Mol. Genet. 19, 3482–3488 (2010)

    Article  CAS  Google Scholar 

  12. Pickart, C. M. & Rose, I. A. Functional heterogeneity of ubiquitin carrier proteins. J. Biol. Chem. 260, 1573–1581 (1985)

    CAS  PubMed  Google Scholar 

  13. Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-1 by viral E3 ligase mK3. J. Cell Biol. 177, 613–624 (2007)

    Article  CAS  Google Scholar 

  14. Cadwell, K. & Coscoy, L. Ubiquitination of nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127–130 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Christensen, D. E., Brzovic, P. S. & Klevit, R. E. E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nature Struct. Mol. Biol. 14, 941–948 (2007)

    Article  CAS  Google Scholar 

  16. Rodrigo-Brenni, M. C. & Morgan, D. O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127–139 (2007)

    Article  CAS  Google Scholar 

  17. Jones, D., Crowe, E., Stevens, T. A. & Candido, E. P. Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes and ubiquitin-like proteins. Genome Biology 3, RESEARCH0002 (2002)

    PubMed  Google Scholar 

  18. Yunus, A. A. & Lima, C. D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nature Struct. Mol. Biol. 13, 491–499 (2006)

    Article  CAS  Google Scholar 

  19. Wu, P. Y. et al. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22, 5241–5250 (2003)

    Article  CAS  Google Scholar 

  20. Sakata, E. et al. Crystal structure of the UbcH5bubiquitin intermediate: insight into the formation of the self-assembled E2Ub conjugates. Structure 18, 138–147 (2010)

    Article  CAS  Google Scholar 

  21. Ozkan, E., Yu, H. & Deisenhofer, J. Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc. Natl Acad. Sci. USA 102, 18890–18895 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Kamadurai, H. B. et al. Insights into ubiquitin transfer cascades from a structure of UbcH5bUbiquitin-HECTNEDD4L complex. Mol. Cell 36, 1095–1102 (2009)

    Article  CAS  Google Scholar 

  23. Ardley, H. C., Tan, N. G., Rose, S. A., Markhan, A. F. & Robinson, P. A. Features of the parkin/ariadne-like ubiquitin ligase, HHARI, that regulates its interaction with the ubiquitin-conjugating enzyme Ubch7. J. Biol. Chem. 276, 19640–19647 (2001)

    Article  CAS  Google Scholar 

  24. Eddins, M. J., Carlile, C. M., Gomez, K. M., Pickart, C. M. & Wolberger, C. Mms2–Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nature Struct. Mol. Biol. 13, 915–920 (2006)

    Article  CAS  Google Scholar 

  25. Fallon, L. et al. A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K–Akt signalling. Nature Cell Biol. 8, 834–842 (2006)

    Article  CAS  Google Scholar 

  26. Joch, M. et al. Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Mol. Biol. Cell 18, 3105–3118 (2007)

    Article  CAS  Google Scholar 

  27. Chen, D. et al. Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J. Biol. Chem. 285, 38214–38223 (2010)

    Article  CAS  Google Scholar 

  28. Maruyama, M. et al. Novel mutations, pseudo-dominant inheritance, and possible familial affects in patients with autosomal recessive juvenille parkinsonism. Ann. Neurol. 48, 245–250 (2000)

    Article  CAS  Google Scholar 

  29. Diao, J., Zhang, Y., Huibregtse, J. M., Zhou, D. & Chen, J. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nature Struct. Mol. Biol. 15, 65–70 (2008)

    Article  CAS  Google Scholar 

  30. Dastur, A., Beaudenon, S., Kelley, M., Krug, R. M. & Huibregtse, M. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 281, 4334–4338 (2005)

    Article  Google Scholar 

  31. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  CAS  Google Scholar 

  32. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999)

    Article  CAS  Google Scholar 

  33. Sheffield, P., Garrard, S. & Derewenda, Z. Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr. Purif. 15, 34–39 (1999)

    Article  CAS  Google Scholar 

  34. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995)

    Article  CAS  Google Scholar 

  35. Johnson, B. A. & Blevins, R. A. NMR View: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Stoll, M. Schwartz and N. Zheng for critical reading of the manuscript and discussions and V. Vittal, K. Stoll and P. Littlefield for technical help. We thank K. Borden, E. Fon, B. Schulman, L. Boyd, J. Chen and A. Merz for expression vectors for HHARI, parkin, E6-AP, Ubc18, human E1 and GST pull-down reagents, respectively. We acknowledge support from the National Institute of General Medical Sciences in the form of 5R01 GM088055 (R.E.K.) and T32 GM07270 (D.M.W.), and the National Science Foundation in the form of MCB0615632 (R.E.K.)

Author information

Authors and Affiliations

Authors

Contributions

D.M.W. performed all experiments. P.S.B. and A.L. contributed to the experimental design for Fig. 2 and Supplementary Fig. 5. D.M.W. and R.E.K. designed the overall study and wrote the manuscript with P.S.B.

Corresponding author

Correspondence to Rachel E. Klevit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-15 with legends and a Supplementary Table. (PDF 2401 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wenzel, D., Lissounov, A., Brzovic, P. et al. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 474, 105–108 (2011). https://doi.org/10.1038/nature09966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09966

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing