Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optically healable supramolecular polymers


Polymers with the ability to repair themselves after sustaining damage could extend the lifetimes of materials used in many applications1. Most approaches to healable materials require heating the damaged area2,3,4. Here we present metallosupramolecular polymers that can be mended through exposure to light. They consist of telechelic, rubbery, low-molecular-mass polymers with ligand end groups that are non-covalently linked through metal-ion binding. On exposure to ultraviolet light, the metal–ligand motifs are electronically excited and the absorbed energy is converted into heat. This causes temporary disengagement of the metal–ligand motifs and a concomitant reversible decrease in the polymers’ molecular mass and viscosity5, thereby allowing quick and efficient defect healing. Light can be applied locally to a damage site, so objects can in principle be healed under load. We anticipate that this approach to healable materials, based on supramolecular polymers and a light–heat conversion step, can be applied to a wide range of supramolecular materials that use different chemistries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism and synthesis of photohealable metallosupramolecular polymers.
Figure 2: Characterization of Zn-based metallosupramolecular polymers.
Figure 3: Mechanical properties and healing of the metallosupramolecular polymers.
Figure 4: Characterization of La-based metallosupramolecular polymers.

Similar content being viewed by others


  1. Blaiszik, B. J. et al. Self-healing polymers and composites. Annu. Rev. Mater. Res. 40, 179–211 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Bergman, S. D. & Wudl, F. Mendable polymers. J. Mater. Chem. 18, 41–62 (2008)

    Article  CAS  Google Scholar 

  3. Wool, R. P. Self-healing materials: a review. Soft Matter 4, 400–418 (2008)

    Article  ADS  CAS  Google Scholar 

  4. Murphy, E. B. & Wudl, F. The world of smart healable materials. Prog. Polym. Sci. 35, 223–251 (2010)

    Article  CAS  Google Scholar 

  5. Cordier, P., Tournilhac, F., Soulie-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Kim, Y. H. & Wool, R. P. A theory of healing at a polymer-polymer interface. Macromolecules 16, 1115–1120 (1983)

    Article  ADS  CAS  Google Scholar 

  7. Chen, X. et al. A thermally re-mendable cross-linked polymeric material. Science 295, 1698–1702 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Murphy, E. B. et al. Synthesis and characterization of a single-component thermally remendable polymer network: Staudinger and Stille revisted. Macromolecules 41, 5203–5209 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Burattini, S. et al. A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor pi-pi stacking interactions. Chem. Commun. (Camb.) 6717–6719 (2009)

  10. Burattini, S. et al. A healable supramolecular polymer blend based on aromatic π−π stacking and hydrogen-bonding interactions. J. Am. Chem. Soc. 132, 12051–12058 (2010)

    Article  CAS  Google Scholar 

  11. Wojtecki, R. J., Meador, M. A. & Rowan, S. J. Utilizing the dynamic bond to access macroscopically-responsive structurally-dynamic polymers. Nature Mater. 10, 14–27 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Bosman, A. W., Sijbesma, R. P. & Meijer, E. W. Supramolecular polymers at work. Mater. Today 7, 34–39 (2004)

    Article  CAS  Google Scholar 

  13. Kumpfer, J. R., Jin, J. Z. & Rowan, S. J. Stimuli-responsive europium-containing metallo-supramolecular polymers. J. Mater. Chem. 20, 145–151 (2010)

    Article  CAS  Google Scholar 

  14. Sivakova, S., Bohnsack, D. A., Mackay, M. E., Suwanmala, P. & Rowan, S. J. Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers. J. Am. Chem. Soc. 127, 18202–18211 (2005)

    Article  CAS  Google Scholar 

  15. Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009)

    Article  ADS  CAS  Google Scholar 

  16. Kautz, H., van Beek, D. J. M., Sijbesma, R. P. & Meijer, E. W. Cooperative end-to-end and lateral hydrogen-bonding motifs in supramolecular thermoplastic elastomers. Macromolecules 39, 4265–4267 (2009)

    Article  ADS  Google Scholar 

  17. Beck, J. B., Ineman, J. M. & Rowan, S. J. Metal/ligand-induced formation of metallo-supramolecular polymers. Macromolecules 38, 5060–5068 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Burnworth, M., Knapton, D., Rowan, S. J. & Weder, C. Metallo-supramolecular polymerization: a route to easy-to-process organic/inorganic hybrid materials. J. Inorg. Organomet. Polym. Mater. 17, 91–103 (2007)

    Article  CAS  Google Scholar 

  19. Burnworth, M., Mendez, J. D., Schroeter, M., Rowan, S. J. & Weder, C. Decoupling optical properties in metallo-supramolecular poly(p-phenylene ethynylene)s. Macromolecules 41, 2157–2163 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Knapton, D., Rowan, S. J. & Weder, C. Synthesis and properties of metallo-supramolecular poly(p-phenylene ethynylene)s. Macromolecules 39, 651–657 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Knapton, D., Iyer, P. K., Rowan, S. J. & Weder, C. Synthesis and properties of metallo-supramolecular poly(p-xylylene)s. Macromolecules 39, 4069–4074 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Knapton, D., Burnworth, M., Rowan, S. J. & Weder, C. Fluorescent organometallic sensors for the detection of chemical-warfare-agent mimics. Angew. Chem. Int. Ed. 45, 5825–5829 (2006)

    Article  CAS  Google Scholar 

  23. Beck, J. B. & Rowan, S. J. Metal-ligand induced supramolecular polymerization: a route to responsive materials. Faraday Discuss. 128, 43–53 (2005)

    Article  ADS  Google Scholar 

  24. Kunzelman, J., Kinami, M., Crenshaw, B. R., Protasiewicz, J. D. & Weder, C. Oligo(p-phenylene vinylene)s as a “new” class of piezochromic fluorophores. Adv. Mater. 20, 119–122 (2008)

    Article  CAS  Google Scholar 

  25. Crenshaw, B. R. et al. Deformation-induced color changes in mechanochromic polyethylene blends. Macromolecules 40, 2400–2408 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Beck, J. B. & Rowan, S. J. Multistimuli, multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc. 125, 13922–13923 (2003)

    Article  CAS  Google Scholar 

  27. Ilavsky, J. & Jemian, P. R. Irena: tool suite for modelling and analysis of small angle scattering. J. Appl. Crystallogr. 42, 347–353 (2009)

    Article  CAS  Google Scholar 

Download references


This material is based on work supported by the US Army Research Office (W911NF-09-1-0288 and W911NF-06-1-0414); the National Science Foundation under grant numbers CHE-0704026, DMR-0602869 and MRI-0821515; the Adolphe Merkle Foundation; and the Postgraduate Research Participation Program at the US Army Research Laboratory, administered by the Oak Ridge Institute of Science and Education through an interagency agreement between the US Department of Energy and Army Research Laboratory (contract number ORISE-1120-1120-99). We thank S. Dellinger for the design and the fabrication of a device to introduce well-defined defects and Kraton Performance Polymers Inc for the donation of the hydroxyl-terminated poly(ethylene-co-butylene).

Author information

Authors and Affiliations



M.B., L.T. and J.R.K. developed the procedures for synthesis and characterization of 3. M.B. prepared and processed all supramolecular polymers. M.B. and G.L.F. did the MDSC experiments. A.J.D. and F.L.B. carried out the TEM and SAXS experiments. M.B. did the mechanical testing. G.L.F. carried out the light–heat conversion experiments. M.B. conducted the photohealing experiments. S.J.R. and C.W. designed the study. All authors discussed results and contributed to the interpretation of data. M.B., S.J.R. and C.W. wrote the paper. All authors contributed to editing the manuscript.

Corresponding authors

Correspondence to Stuart J. Rowan or Christoph Weder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-12 with legends, a Supplementary Discussion and Supplementary Tables 1-3 with legends. (PDF 2229 kb)

Supplementary Movie 1

The movie shows optical healing of Zn-based metallo-supramolecular polymer. Shown is a damaged film of 3•[Zn(NTf2)2]0.7 before, during, and after exposure to light in the wavelength range from 320-390 nm at an intensity of 950 mW/cm2, focused on the center of the film, demonstrating the localized healing of metallo-supramolecular. (MPG 5686 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burnworth, M., Tang, L., Kumpfer, J. et al. Optically healable supramolecular polymers. Nature 472, 334–337 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing