Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis

Abstract

The spliceosome is a dynamic macromolecular machine that assembles on pre-messenger RNA substrates and catalyses the excision of non-coding intervening sequences (introns)1,2,3. Four of the five major components of the spliceosome, U1, U2, U4 and U5 small nuclear ribonucleoproteins (snRNPs), contain seven Sm proteins (SmB/B′, SmD1, SmD2, SmD3, SmE, SmF and SmG) in common4,5. Following export of the U1, U2, U4 and U5 snRNAs to the cytoplasm6,7, the seven Sm proteins, chaperoned by the survival of motor neurons (SMN) complex, assemble around a single-stranded, U-rich sequence called the Sm site in each small nuclear RNA (snRNA), to form the core domain of the respective snRNP particle8,9. Core domain formation is a prerequisite for re-import into the nucleus10, where these snRNPs mature via addition of their particle-specific proteins. Here we present a crystal structure of the U4 snRNP core domain at 3.6 Å resolution, detailing how the Sm site heptad (AUUUUUG) binds inside the central hole of the heptameric ring of Sm proteins, interacting one-to-one with SmE–SmG–SmD3–SmB–SmD1–SmD2–SmF. An irregular backbone conformation of the Sm site sequence combined with the asymmetric structure of the heteromeric protein ring allows each base to interact in a distinct manner with four key residues at equivalent positions in the L3 and L5 loops of the Sm fold. A comparison of this structure with the U1 snRNP at 5.5 Å resolution11,12 reveals snRNA-dependent structural changes outside the Sm fold, which may facilitate the binding of particle-specific proteins that are crucial to biogenesis of spliceosomal snRNPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the U4 snRNP core domain.
Figure 2: The Sm site RNA binds asymmetrically in the central hole of the heptamer ring.
Figure 3: Interactions between the U4 Sm site heptad nucleotides and the Sm proteins.
Figure 4: snRNA-dependent structural changes of the U1 and U4 core domains.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the U4 snRNP core domain have been deposited in the PDB data bank under accession numbers 2Y9A, 2Y9B, 2Y9C and 2Y9D.

References

  1. Burge, C. B., Tuschl, T. & Sharp, P. A. in The RNA World 2nd edn (eds Gesteland, R. R., Cech, T. R. & Atkins, J. F. ) 525–560 (Cold Spring Harbor Laboratory Press, 1999)

    Google Scholar 

  2. Will, C. L. & Lührmann, R. in The RNA World 3rd edn (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F. ) 369–400 (Cold Spring Harbor Laboratory Press, 2006)

    Google Scholar 

  3. Yu, Y.-T., Scharl, E. C., Smith, C. M. & Steitz, J. A. in The RNA World 2nd edn (eds Gesteland, R. R.,, Cech, T. R. & Atkins, J. F. ) 487–524 (Cold Spring Harbor Laboratory Press, 1999)

    Google Scholar 

  4. Hinterberger, M., Pettersson, I. & Steitz, J. A. Isolation of small nuclear ribonucleoproteins containing U1, U2, U4, U5, and U6 RNAs. J. Biol. Chem. 258, 2604–2613 (1983)

    CAS  PubMed  Google Scholar 

  5. Bringmann, P. & Lührmann, R. Purification of the individual snRNPs U1, U2, U5 and U4/U6 from HeLa cells and characterization of their protein constituents. EMBO J. 5, 3509–3516 (1986)

    Article  CAS  Google Scholar 

  6. Mattaj, I. W. Cap trimethylation of U snRNA is cytoplasmic and dependent on U snRNP protein binding. Cell 46, 905–911 (1986)

    Article  CAS  Google Scholar 

  7. Ohno, M., Segref, A., Bachi, A., Wilm, M. & Mattaj, I. W. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell 101, 187–198 (2000)

    Article  CAS  Google Scholar 

  8. Meister, G., Eggert, C. & Fischer, U. SMN-mediated assembly of RNPs: a complex story. Trends Cell Biol. 12, 472–478 (2002)

    Article  CAS  Google Scholar 

  9. Pellizzoni, L., Yong, J. & Dreyfuss, G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 298, 1775–1779 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Fischer, U., Sumpter, V., Sekine, M., Satoh, T. & Lührmann, R. Nucleo-cytoplasmic transport of U snRNPs: definition of a nuclear location signal in the Sm core domain that binds a transport receptor independently of the m3G cap. EMBO J. 12, 573–583 (1993)

    Article  CAS  Google Scholar 

  11. Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K. W., Li, J. & Nagai, K. Crystal structure of the human spliceosomal U1 snRNP at 5.5 Å resolution. Nature 458, 475–480 (2009)

    Article  ADS  CAS  Google Scholar 

  12. Oubridge, C., Pomeranz Krummel, D. A., Leung, A. K. W., Li, J. & Nagai, K. Interpreting a low resolution map of human U1 snRNP using anomalous scatterers. Structure 17, 930–938 (2009)

    Article  CAS  Google Scholar 

  13. Hermann, H. et al. snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein–protein interactions. EMBO J. 14, 2076–2088 (1995)

    Article  CAS  Google Scholar 

  14. Seraphin, B. Sm and Sm-like proteins belong to a large family: identification of proteins of the U6 as well as the U1, U2, U4 and U5 snRNPs. EMBO J. 14, 2089–2098 (1995)

    Article  CAS  Google Scholar 

  15. Cooper, M., Johnston, L. H. & Beggs, J. D. Identification and characterization of Uss1p (Sdb23p): a novel U6 snRNA-associated protein with significant similarity to core proteins of small nuclear ribonucleoproteins. EMBO J. 14, 2066–2075 (1995)

    Article  CAS  Google Scholar 

  16. Kambach, C. et al. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96, 375–387 (1999)

    Article  CAS  Google Scholar 

  17. Kastner, B. & Lührmann, R. Electron microscopy of U1 small nuclear ribonucleoprotein particles: shape of the particle and position of the 5′ RNA terminus. EMBO J. 8, 277–286 (1989)

    Article  CAS  Google Scholar 

  18. Kastner, B., Bach, M. & Lührmann, R. Electron microscopy of small nuclear ribonucleoprotein (snRNP) particles U2 and U5: evidence for a common structure-determining principle in the major U snRNP family. Proc. Natl Acad. Sci. USA 87, 1710–1714 (1990)

    Article  ADS  CAS  Google Scholar 

  19. Törö, I. et al. RNA binding in an Sm core domain: X-ray structure and functional analysis of an archaeal Sm protein complex. EMBO J. 20, 2293–2303 (2001)

    Article  Google Scholar 

  20. Thore, S., Mayer, C., Sauter, C., Weeks, S. & Suck, D. Crystal structures of the Pyrococcus abyssi Sm core and its complex with RNA. Common features of RNA binding in Archaea and Eukarya. J. Biol. Chem. 278, 1239–1247 (2003)

    Article  CAS  Google Scholar 

  21. Weber, G., Trowitzsch, S., Kastner, B., Lührmann, R. & Wahl, M. C. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 29, 4172–4184 (2010)

    Article  CAS  Google Scholar 

  22. Leung, A. K. W. et al. Use of RNA tertiary interaction modules for the crystallization of the spliceosomal snRNP core domain. J. Mol. Biol. 402, 154–164 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Raker, V. A., Hartmuth, K., Kastner, B. & Lührmann, R. Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol. Cell. Biol. 19, 6554–6565 (1999)

    Article  CAS  Google Scholar 

  24. McConnell, T. S., Lokken, R. P. & Steitz, J. A. Assembly of the U1 snRNP involves interactions with the backbone of the terminal stem of U1 snRNA. RNA 9, 193–201 (2003)

    Article  CAS  Google Scholar 

  25. Hartmuth, K., Raker, V. A., Huber, J., Branlant, C. & Lührmann, R. An unusual chemical reactivity of Sm site adenosines strongly correlates with proper assembly of core U snRNP particles. J. Mol. Biol. 285, 133–147 (1999)

    Article  CAS  Google Scholar 

  26. Urlaub, H., Raker, V. A., Kostka, S. & Lührmann, R. Sm protein–Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J. 20, 187–196 (2001)

    Article  CAS  Google Scholar 

  27. Gardner, P. P. et al. Rfam: updates to the RNA families database. Nucleic Acids Res. 37, D137–D140 (2009)

    Article  Google Scholar 

  28. Guthrie, C. & Patterson, B. Spliceosomal snRNAs. RNA 9, 193–201 (2003)

    Article  Google Scholar 

  29. Draper, D. E. RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys. J. 95, 5489–5495 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Nelissen, R. L., Will, C. L., van Venrooij, W. J. & Lührmann, R. The association of the U1-specific 70K and C proteins with U1 snRNPs is mediated in part by common U snRNP proteins. EMBO J. 13, 4113–4125 (1994)

    Article  CAS  Google Scholar 

  31. Price, S. R., Ito, N., Oubridge, C., Avis, J. M. & Nagai, K. Crystallization of RNA–protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249, 398–408 (1995)

    Article  CAS  Google Scholar 

  32. Sauter, C. et al. Additives for the crystallization of proteins and nucleic acids. J. Cryst. Growth 196, 365–376 (1999)

    Article  ADS  CAS  Google Scholar 

  33. Doublié, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997)

    Article  Google Scholar 

  34. Leslie, A. G. W. The integration of macromolecular diffraction data. Acta Crystallogr. D 62, 48–57 (2006)

    Article  Google Scholar 

  35. Evans, P. R. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  Google Scholar 

  36. French, G. S. & Wilson, K. S. On the treatment of negative intensity observations. Acta Crystallogr. A 34, 517–525 (1978)

    Article  ADS  Google Scholar 

  37. Kabsch, W. XDS. Acta Crystallogr. D 66 125–132 (2010) CrossRef

    Article  CAS  Google Scholar 

  38. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis . Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006)

    Article  ADS  CAS  Google Scholar 

  39. Hendrickson, W. A. & Ogata, C. M. Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol. 276, 494–523 (1997)

    Article  CAS  Google Scholar 

  40. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  Google Scholar 

  41. de La Fortelle, E. & Bricogne, G. Maximum likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  Google Scholar 

  42. Terwilliger, T. C. SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003)

    Article  CAS  Google Scholar 

  43. Terwilliger, T. C. SOLVE and RESOLVE: automated structure solution, density modification and model building. J. Synchrotron Radiat. 11, 49–52 (2004)

    Article  CAS  Google Scholar 

  44. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997)

    Article  CAS  Google Scholar 

  45. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  46. Navaza, J. Implementation of molecular replacement in AmoRe. Acta Crystallogr. D 57, 1367–1372 (2001)

    Article  CAS  Google Scholar 

  47. Cowtan, K. D., Zhang, K. Y. J. & Main, P. In International Tables for Crystallography, Volume F. Crystallography of Biological Macromolecules (eds. Rossmann, M. G. & Arnold, E. ) 705–710 (Kluwer Academic Publishers, 2001)

    Google Scholar 

  48. Törö, I., Basquin, J., Teo-Dreher, H. & Suck, D. Archaeal Sm proteins form heptameric and hexameric complexes: crystal structures of the Sm1 and Sm2 proteins from the hyperthermophile Archaeoglobus fulgidus . J. Mol. Biol. 320, 129–142 (2002)

    Article  Google Scholar 

  49. Collins, B. M. et al. Homomeric ring assemblies of eukaryotic Sm proteins have affinity for both RNA and DNA. Crystal structure of an oligomeric complex of yeast SmF. J. Biol. Chem. 278, 17291–17298 (2003)

    Article  CAS  Google Scholar 

  50. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot . Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  Google Scholar 

  51. Brunger, A. T. Version 1.2 of the Crystallography and NMR system. Nature Protocols 2, 2728–2733 (2007)

    Article  CAS  Google Scholar 

  52. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  Google Scholar 

  53. Vagin, A. et al. Organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr. D 60, 2184–2195 (2004)

    Article  Google Scholar 

  54. Diamond, R. On the multiple simultaneous superposition of molecular structures by rigid body transformations. Protein Sci. 1, 1279–1287 (1992)

    Article  CAS  Google Scholar 

  55. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    Article  ADS  Google Scholar 

  56. DeLano, W. L. The PyMOL Molecular Graphics System 〈http://www.pymol.org〉 (2002)

Download references

Acknowledgements

This work was supported by the Medical Research Council of the UK and a HFSP grant. A.K.W.L. was supported by the Overseas Research Students Awards Scheme, Canada-Cambridge Commonwealth studentship, a postgraduate scholarship from NSERC and a Junior Research Fellowship from Sidney Sussex College, Cambridge University. We thank the European Synchrotron Radiation Facility and Daresbury beamline staff for their support. We thank M. Jinek, M. Kampmann and Y. Kondo for their help with crystallization. We also thank C. Kambach, J. Avis, R. Young, S. Walke and H. Teo for laying the foundation of this project, C. Oubridge and D. Pomeranz Krummel for sharing Sm proteins and providing help and advice throughout the project, and P. Zwart for advice on twinning.

Author information

Authors and Affiliations

Authors

Contributions

A.K.W.L. and K.N. designed the constructs. A.K.W.L. crystallized the core domain, collected data and solved the structure in P6122. J.L. identified twinning and refined the structure in P31. All three authors wrote the paper.

Corresponding authors

Correspondence to Kiyoshi Nagai or Jade Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3 and Supplementary Figures 1-11 with legends. (PDF 1769 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, A., Nagai, K. & Li, J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473, 536–539 (2011). https://doi.org/10.1038/nature09956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09956

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing