Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin crossover and iron-rich silicate melt in the Earth’s deep mantle

Subjects

Abstract

A melt has greater volume than a silicate solid of the same composition. But this difference diminishes at high pressure, and the possibility that a melt sufficiently enriched in the heavy element iron might then become more dense than solids at the pressures in the interior of the Earth (and other terrestrial bodies) has long been a source of considerable speculation1,2. The occurrence of such dense silicate melts in the Earth's lowermost mantle would carry important consequences for its physical and chemical evolution and could provide a unifying model for explaining a variety of observed features in the core–mantle boundary region3. Recent theoretical calculations4 combined with estimates of iron partitioning between (Mg,Fe)SiO3 perovskite and melt at shallower mantle conditions5,6,7 suggest that melt is more dense than solids at pressures in the Earth's deepest mantle, consistent with analysis of shockwave experiments8. Here we extend measurements of iron partitioning over the entire mantle pressure range, and find a precipitous change at pressures greater than 76 GPa, resulting in strong iron enrichment in melts. Additional X-ray emission spectroscopy measurements on (Mg0.95Fe0.05)SiO3 glass indicate a spin collapse around 70 GPa, suggesting that the observed change in iron partitioning could be explained by a spin crossover of iron (from high-spin to low-spin) in silicate melt. These results imply that (Mg,Fe)SiO3 liquid becomes more dense than coexisting solid at 1,800 km depth in the lower mantle. Soon after the Earth's formation, the heat dissipated by accretion and internal differentiation could have produced a dense melt layer up to 1,000 km in thickness underneath the solid mantle. We also infer that (Mg,Fe)SiO3 perovskite is on the liquidus at deep mantle conditions, and predict that fractional crystallization of dense magma would have evolved towards an iron-rich and silicon-poor composition, consistent with seismic inferences of structures in the core–mantle boundary region.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Backscattered electron images and X-ray maps for Si, Mg and Fe for samples recovered from high-pressure melting experiments.
Figure 2: Change in Fe-Mg distribution coefficient and calculated density profiles.
Figure 3: Evolution of X-ray emission spectra of (Mg 0.95 Fe 0.05 )SiO 3 glass with increasing pressure.
Figure 4: Evolution and crystallization of dense melts in the deep mantle.

Similar content being viewed by others

References

  1. Stolper, E., Walker, D., Hager, B. H. & Hays, J. F. Melt segregation from partially molten source regions: the importance of melt density and source region size. J. Geophys. Res. 86, 6261–6271 (1981)

    Article  ADS  CAS  Google Scholar 

  2. Agee, C. B. Crystal-liquid density inversions in terrestrial and lunar magmas. Phys. Earth Planet. Inter. 107, 63–74 (1998)

    Article  ADS  CAS  Google Scholar 

  3. Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature 450, 866–869 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Stixrude, L. et al. Thermodynamics of silicate liquids in the deep Earth. Earth Planet. Sci. Lett. 278, 226–232 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Ito, E., Kubo, A., Katsura, T. & Walter, M. J. Melting experiments of mantle materials under lower mantle conditions with implications for magma ocean differentiation. Phys. Earth Planet. Inter. 143–144, 397–406 (2004)

    Article  ADS  Google Scholar 

  6. Corgne, A. et al. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Liebske, C. et al. Compositional effects on element partitioning between Mg-silicate perovskite and silicate melts. Contrib. Mineral. Petrol. 149, 113–128 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Mosenfelder, J. L., Asimov, P. D. & Ahrens, T. J. Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. J. Geophys. Res. 112 B06208 10.1029/2006JB004364 (2007)

    Article  ADS  CAS  Google Scholar 

  9. McCammon, C. Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387, 694–696 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Badro, J. et al. Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300, 789–791 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Auzende, A.-L. et al. Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet. Sci. Lett. 269, 164–174 (2008)

    Article  ADS  CAS  Google Scholar 

  12. de Koker, N. P., Stixrude, L. & Karki, B. B. Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure. Geochim. Cosmochim. Acta 72, 1427–1441 (2008)

    Article  ADS  CAS  Google Scholar 

  13. Karki, B. B. First-principles molecular dynamics simulations of silicate melts: structural and dynamical properties. Rev. Mineral. Geochem. 71, 355–389 (2010)

    Article  CAS  Google Scholar 

  14. Tsuchiya, T., Wentzcovitch, R. M., da Silva, C. R. S. & de Gironcoli, S. Spin transition in magnesiowüstite in Earth's lower mantle. Phys. Rev. Lett. 96, 198501 (2006)

    Article  ADS  Google Scholar 

  15. Bengtson, A., Persson, K. & Morgan, D. Ab initio study of the composition dependence of the pressure-induced spin crossover in perovskite (Mg1-x,Fex)SiO3 . Earth Planet. Sci. Lett. 265, 535–545 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Irifune, T. et al. Iron partitioning and density change of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010)

    Article  ADS  CAS  Google Scholar 

  17. Hirose, K. Phase transition in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J. Geophys. Res. 107 2078 10.1029/2001JB000597 (2002)

    Article  ADS  Google Scholar 

  18. Lundin, S. et al. Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys. Earth Planet. Inter. 168, 97–102 (2008)

    Article  ADS  CAS  Google Scholar 

  19. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981)

    Article  ADS  Google Scholar 

  20. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997)

    Article  ADS  CAS  Google Scholar 

  21. Hernlund, J. W. & Houser, C. On the distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008)

    Article  ADS  CAS  Google Scholar 

  22. Cobden, L. et al. Thermochemical interpretation of 1-D seismic data for the lower mantle: the significance of nonadiabatic thermal gradients and compositional heterogeneity. J. Geophys. Res. 114 B11309 10.1029/2008JB006262 (2009)

    Article  ADS  CAS  Google Scholar 

  23. Williams, Q. & Garnero, E. J. Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Wicks, J. K., Jackson, J. M. & Sturhahn, W. Very low sound velocities in iron-rich (Mg,Fe)O: implications for the core-mantle boundary region. Geophys. Res. Lett. 37 L15304 10.1029/2010GL043689 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Thorne, M. S. & Garnero, E. J. Inferences on ultralow-velocity zone structure from a global analysis of SPdKS waves. J. Geophys. Res. 109 B08301 10.1029/2004JB003010 (2004)

    Article  ADS  Google Scholar 

  26. Hernlund, J. W. & Jellinek, A. M. Dynamics and structure of a stirred partially molten ultralow velocity zone. Earth Planet. Sci. Lett. 296, 1–8 (2010)

    Article  ADS  CAS  Google Scholar 

  27. Hier-Majumder, S. Influence of contiguity on seismic velocities of partially molten aggregates. J. Geophys. Res. 113 B12205 10.1029/2008JB005662 (2008)

    Article  ADS  Google Scholar 

  28. Fialin, M., Catillon, G. & Andrault, D. Disproportionation of Fe2+ in Al-free silicate perovskite in the laser heated diamond anvil cell as recorded by electron probe microanalysis of oxygen. Phys. Chem. Miner. 36, 183–191 (2009)

    Article  ADS  CAS  Google Scholar 

  29. Komabayashi, T. et al. High-temperature compression of ferropericlase and the effect of temperature on iron spin transition. Earth Planet. Sci. Lett. 297, 691–699 (2010)

    Article  ADS  CAS  Google Scholar 

  30. Ricolleau, A. et al. Density profile of pyrolite under the lower mantle conditions. Geophys. Res. Lett. 36 L06302 10.1029/2008GL036759 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Takahashi, E. Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J. Geophys. Res. 91, 9367–9382 (1986)

    Article  ADS  CAS  Google Scholar 

  32. Shen, G., Mao, H. K. & Hemley, R. J. in Advanced Materials ’96 149–152 (Proc. 3rd NIRIM International Symposium on Advanced Materials, 1996)

    Google Scholar 

  33. Presnall, D. C., Weng, Y.-H., Milholland, C. S. & Walter, M. J. Liquidus phase relations in the system MgO–MgSiO3 at pressures up to 25 GPa — constraints on crystallization of a molten Hadean mantle. Phys. Earth Planet. Inter. 107, 83–95 (1998)

    Article  ADS  CAS  Google Scholar 

  34. Fiquet, G. et al. Melting of peridotite to140 gigapascals. Science 329, 1516–1518 (2010)

    Article  ADS  CAS  Google Scholar 

  35. Akahama, Y. & Kawamura, H. High pressure Raman spectroscopy of diamond anvils to 250 GPa: method for pressure determination in the multimegabar pressure range. J. Appl. Phys. 96, 3748–3751 (2004)

    Article  ADS  CAS  Google Scholar 

  36. Ozawa, H. et al. Experimental study of reaction between perovskite and molten iron to 146 GPa and implications for chemically distinct buoyant layer at the top of the core. Phys. Chem. Miner. 36, 355–363 (2009)

    Article  ADS  CAS  Google Scholar 

  37. Tateno, S., Sinmyo, R., Hirose, K. & Nishioka, H. The advanced ion-milling method for preparation of thin film using Ion Slicer: application to a sample recovered from diamond-anvil cell. Rev. Sci. Instrum. 80, 013901 (2009)

    Article  ADS  Google Scholar 

  38. Sasano, Y. & Muto, S. Energy-drift correction of electron energy-loss spectra from prolonged data accumulation of low SNR signals. J. Electron Microsc. 57, 149–158 (2008)

    Article  CAS  Google Scholar 

  39. van Aken, P. A., Liebscher, B. & Styrsa, V. J. Quantitative determination of iron oxidation states in minerals using Fe L2,3-edge electron energy-loss near-edge structure spectroscopy. Phys. Chem. Miner. 25, 323–327 (1998)

    Article  ADS  CAS  Google Scholar 

  40. Jayasuriya, K., O’Neill, H. S. C., Berry, A. J. & Campbell, S. J. A Mössbauer study of the oxidation state of Fe in silicate melts. Am. Mineral. 89, 1597–1609 (2004)

    Article  ADS  CAS  Google Scholar 

  41. Jarrige, I., Cai, Y. Q., Ishii, H., Hiraoka, N. & Bleuzen, A. Thermally activated charge transfer in a Prussian blue derivative probed by resonant inelastic x-ray scattering. Appl. Phys. Lett. 93, 054101 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Sinmyo for support with TEM analyses and K. Shimizu for preparing the glass sample. Discussion with R. Caracas and comments from D. Frost were helpful. C.-C. Chen is acknowledged for XES measurements at BL12XU Taiwan Beamline, SPring-8. Some of the melting experiments were conducted at BL10XU (SPring-8 proposal no. 2009B0087). J.H. was supported by the National Science Foundation (NSFEAR0855737).

Author information

Authors and Affiliations

Authors

Contributions

R.N., H.O., S.T. and K.H. performed high-pressure experiments and chemical analyses. S.M. carried out the ELNES measurements. H.I. and N.H. supported the XES study at SPring-8. R.N., K.H. and J.H. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kei Hirose.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, additional references, Supplementary Table 1 and Supplementary Figures 1-5 with legends. (PDF 5293 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nomura, R., Ozawa, H., Tateno, S. et al. Spin crossover and iron-rich silicate melt in the Earth’s deep mantle. Nature 473, 199–202 (2011). https://doi.org/10.1038/nature09940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09940

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing