Electromagnetically induced transparency and slow light with optomechanics



Controlling the interaction between localized optical and mechanical excitations has recently become possible following advances in micro- and nanofabrication techniques1,2. So far, most experimental studies of optomechanics have focused on measurement and control of the mechanical subsystem through its interaction with optics, and have led to the experimental demonstration of dynamical back-action cooling and optical rigidity of the mechanical system1,3. Conversely, the optical response of these systems is also modified in the presence of mechanical interactions, leading to effects such as electromagnetically induced transparency4 (EIT) and parametric normal-mode splitting5. In atomic systems, studies6,7 of slow and stopped light (applicable to modern optical networks8 and future quantum networks9) have thrust EIT to the forefront of experimental study during the past two decades. Here we demonstrate EIT and tunable optical delays in a nanoscale optomechanical crystal, using the optomechanical nonlinearity to control the velocity of light by way of engineered photon–phonon interactions. Our device is fabricated by simply etching holes into a thin film of silicon. At low temperature (8.7 kelvin), we report an optically tunable delay of 50 nanoseconds with near-unity optical transparency, and superluminal light with a 1.4 microsecond signal advance. These results, while indicating significant progress towards an integrated quantum optomechanical memory10, are also relevant to classical signal processing applications. Measurements at room temperature in the analogous regime of electromagnetically induced absorption show the utility of these chip-scale optomechanical systems for optical buffering, amplification, and filtering of microwave-over-optical signals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Optomechanical system.
Figure 2: Optical reflection response at temperature T = 8.7 K.
Figure 3: Measured temporal shifts and amplification.


  1. 1

    Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Favero, I. & Karrai, K. Optomechanics of deformable optical cavities. Nature Photon. 3, 201–205 (2009)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Braginsky, V. B. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, 1977)

    Google Scholar 

  4. 4

    Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Gröblacher, S., Hammerer, K., Vanner, M. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)

    ADS  Article  Google Scholar 

  6. 6

    Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Boyd, R. W. & Gauthier, D. J. Controlling the velocity of light pulses. Science 326, 1074–1077 (2009)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Chang, D., Safavi-Naeini, A. H., Hafezi, M. & Painter, O. Slowing and stopping light using an optomechanical crystal array. N. J. Phys. 13, 023003 (2011)

    Article  Google Scholar 

  11. 11

    Zhang, R., Garner, S. R. & Hau, L. V. Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates. Phys. Rev. Lett. 103, 233602 (2009)

    ADS  Article  Google Scholar 

  12. 12

    Phillips, M. C. et al. Electromagnetically induced transparency in semiconductors via biexciton coherence. Phys. Rev. Lett. 91, 183602 (2003)

    ADS  Article  Google Scholar 

  13. 13

    Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006)

    ADS  Article  Google Scholar 

  14. 14

    Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Thévenaz, L. Slow and fast light in optical fibres. Nature Photon. 2, 474–481 (2008)

    ADS  Article  Google Scholar 

  16. 16

    Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009)

    ADS  Article  Google Scholar 

  18. 18

    de Riedmatten, H., Afzelius, M., Staudt, M. U., Simon, C. & Gisin, N. A solid-state light-matter interface at the single-photon level. Nature 456, 773–777 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Yanik, M. F., Suh, W., Wang, Z. & Fan, S. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004)

    ADS  Article  Google Scholar 

  20. 20

    Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006)

    ADS  Article  Google Scholar 

  21. 21

    Teufel, J. D. et al. Circuit cavity electromechanics in the strong coupling regime. Nature doi:10.1038/nature09898 (10 March 2011); preprint at 〈http://arXiv.org/abs/1011.3067〉 (2010)

  22. 22

    Notomi, M., Kuramochi, E. & Tanabe, T. Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photon. 2, 741–747 (2008)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78–82 (2009)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010); published online 9 December 2009.

    ADS  Article  Google Scholar 

  26. 26

    Lezama, A., Barreiro, S. & Akulshin, A. M. Electromagnetically induced absorption. Phys. Rev. A 59, 4732–4735 (1999)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Nguyen, C. T.-C. MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 251–270 (2007)

    Article  Google Scholar 

  28. 28

    Lakin, K., Kline, G. & McCarron, K. Development of miniature filters for wireless applications. IEEE Trans. Microwave Theory Techn. 43, 2933–2939 (1995)

    ADS  Article  Google Scholar 

  29. 29

    Stannigel, K., Rabl, P., Srensen, A. S., Zoller, P. & Lukin, M. D. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Safavi-Naeini, A. H. & Painter, O. Proposal for an optomechanical traveling wave phonon-photon translator. N. J. Phys. 13, 013017 (2011)

    Article  Google Scholar 

Download references


We thank K. Schwab for providing the microwave modulation source used in this work. This work was supported by the DARPA/MTO ORCHID programme through a grant from AFOSR, and the Kavli Nanoscience Institute at Caltech. A.H.S.-N. and J.C. acknowledge support from NSERC.

Author information




J.C., A.H.S.-N. and M.E. performed the device design, and J.C. performed the device fabrication with support from M.W. and J.T.H. Measurements and data analysis were performed by A.H.S.-N. and T.P.M.A., with support from both D.E.C. and Q.L. and supervision by O.P. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to O. Painter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text and Data, Supplementary Figures 1-6 with legends and additional references. (PDF 664 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Safavi-Naeini, A., Alegre, T., Chan, J. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011). https://doi.org/10.1038/nature09933

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing