Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ancestral polyploidy in seed plants and angiosperms


Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms1,2,3, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications4,5,6, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications—one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Hypothetical tree topologies and summary of orthogroups consistent with ancient gene duplications before the split of monocots and eudicots.
Figure 2: Age distribution of ancient duplications shared by monocots and eudicots.
Figure 3: Ancestral polyploidy events in seed plants and angiosperms.


  1. Ohno, S. Evolution by Gene Duplication (Springer, 1970)

    Book  Google Scholar 

  2. Lynch, M. The Origins of Genome Architecture (Sinauer, 2007)

    Google Scholar 

  3. Edger, P. P. & Pires, J. C. Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res. 17, 699–717 (2009)

    CAS  Article  Google Scholar 

  4. De Bodt, S., Maere, S. & Van de Peer, Y. Genome duplication and the origin of angiosperms. Trends Ecol. Evol. 20, 591–597 (2005)

    Article  Google Scholar 

  5. Soltis, D. E., Bell, C. D., Kim, S. & Soltis, P. S. Origin and early evolution of angiosperms. Ann. NY Acad. Sci. 1133, 3–25 (2008)

    ADS  CAS  Article  Google Scholar 

  6. Fawcett, J. A., Maere, S. & Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl Acad. Sci. USA 106, 5737–5742 (2009)

    ADS  CAS  Article  Google Scholar 

  7. Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 148, 1772–1781 (2008)

    CAS  Article  Google Scholar 

  8. Bowers, J. E., Chapman, B. A., Rong, J. & Paterson, A. H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433–438 (2003)

    ADS  CAS  Article  Google Scholar 

  9. Jaillon, O. et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007)

    ADS  CAS  Article  Google Scholar 

  10. Vision, T. J., Brown, D. G. & Tanksley, S. D. The origins of genomic duplications in Arabidopsis . Science 290, 2114–2117 (2000)

    ADS  CAS  Article  Google Scholar 

  11. Barker, M. S., Vogel, H. & Schranz, M. E. Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol. Evol. 1, 391–399 (2009)

    Article  Google Scholar 

  12. Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486–488 (2008)

    ADS  CAS  Article  Google Scholar 

  13. Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944–1954 (2008)

    CAS  Article  Google Scholar 

  14. Tuskan, G. A. et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006)

    ADS  CAS  Article  Google Scholar 

  15. Tang, H., Bowers, J. E., Wang, X. & Paterson, A. H. Angiosperm genome comparisons reveal early polyploidy in the monocot lineage. Proc. Natl Acad. Sci. USA 107, 472–477 (2010)

    ADS  CAS  Article  Google Scholar 

  16. Cui, L. et al. Widespread genome duplications throughout the history of flowering plants. Genome Res. 16, 738–749 (2006)

    CAS  Article  Google Scholar 

  17. Blomme, T. et al. The gain and loss of genes during 600 million years of vertebrate evolution. Genome Biol. 7, R43 (2006)

    Article  Google Scholar 

  18. Ebersberger, I., Strauss, S. & von Haeseler, A. HaMStR: profile hidden Markov model based search for orthologs in ESTs. BMC Evol. Biol. 9, 157 (2009)

    Article  Google Scholar 

  19. Moore, M. J., Bell, C. D., Soltis, P. S. & Soltis, D. E. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl Acad. Sci. USA 104, 19363–19368 (2007)

    ADS  Article  Google Scholar 

  20. McLachlan, G., Peel, D., Basford, K. E. & Adams, P. The EMMIX algorithm for the fitting of normal and t-components. J. Stat. Softw. 4, i02 (1999)

    Article  Google Scholar 

  21. Bell, C. D., Soltis, D. E. & Soltis, P. S. The age of the angiosperms: a molecular timescale without a clock. Evolution 59, 1245–1258 (2005)

    CAS  Article  Google Scholar 

  22. Schneider, H. et al. Ferns diversified in the shadow of angiosperms. Nature 428, 553–557 (2004)

    ADS  CAS  Article  Google Scholar 

  23. Freeling, M. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu. Rev. Plant Biol. 60, 433–453 (2009)

    CAS  Article  Google Scholar 

  24. Kassahn, K. S., Dang, V. T., Wilkins, S. J., Perkins, A. C. & Ragan, M. A. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res. 19, 1404–1418 (2009)

    CAS  Article  Google Scholar 

  25. Devlin, P. F., Patel, S. R. & Whitelam, G. C. Phytochrome E influences internode elongation and flowering time in Arabidopsis . Plant Cell 10, 1479–1487 (1998)

    CAS  Article  Google Scholar 

  26. Dechaine, J. M., Gardner, G. & Weinig, C. Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturation. Plant Cell Environ. 32, 1297–1309 (2009)

    CAS  Article  Google Scholar 

  27. Mathews, S., Burleigh, J. G. & Donoghue, M. J. Adaptive evolution in the photosensory domain of phytochrome A in early angiosperms. Mol. Biol. Evol. 20, 1087–1097 (2003)

    CAS  Article  Google Scholar 

  28. Parry, G. et al. Complex regulation of the TIR1/AFB family of auxin receptors. Proc. Natl Acad. Sci. USA 106, 22540–22545 (2009)

    ADS  CAS  Article  Google Scholar 

  29. Hu, W., dePamphilis, C. W. & Ma, H. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families. J. Integr. Plant Biol. 50, 1031–1045 (2008)

    CAS  Article  Google Scholar 

  30. Prigge, M. J. & Clark, S. E. Evolution of the class III HD-Zip gene family in land plants. Evol. Dev. 8, 350–361 (2006)

    CAS  Article  Google Scholar 

  31. Buggs, R. J. et al. Gene loss and silencing in Tragopogon miscellus (Asteraceae): comparison of natural and synthetic allotetraploids. Heredity 103, 73–81 (2009)

    CAS  Article  Google Scholar 

  32. Vandepoele, K., Simillion, C. & Van de Peer, Y. Detecting the undetectable: uncovering duplicated segments in Arabidopsis by comparison with rice. Trends Genet. 18, 606–608 (2002)

    CAS  Article  Google Scholar 

  33. Blanc, G. & Wolfe, K. H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16, 1667–1678 (2004)

    CAS  Article  Google Scholar 

  34. Van de Peer, Y., Fawcett, J. A., Proost, S., Sterck, L. & Vandepoele, K. The flowering world: a tale of duplications. Trends Plant Sci. 14, 680–688 (2009)

    CAS  Article  Google Scholar 

  35. Li, L., Stoeckert, C. J., Jr & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003)

    CAS  Article  Google Scholar 

  36. Proost, S. et al. PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21, 3718–3731 (2009)

    CAS  Article  Google Scholar 

  37. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    CAS  Article  Google Scholar 

  38. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009)

    CAS  Article  Google Scholar 

  39. Thompson, J. D., Gibson, T. J. & Higgins, D. G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinf. 2.3.1–2.3.22. (2002)

  40. Stamatakis, A., Ludwig, T. & Meier, H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463 (2005)

    CAS  Article  Google Scholar 

  41. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006)

    CAS  Article  Google Scholar 

  42. Felsenstein, J. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27, 401–410 (1978)

    Article  Google Scholar 

  43. Hendy, M. D. & Penny, D. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38, 297–309 (1989)

    Article  Google Scholar 

  44. Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003)

    CAS  Article  Google Scholar 

  45. Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008)

    ADS  CAS  Article  Google Scholar 

  46. Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 33–39 (1997)

    ADS  CAS  Article  Google Scholar 

  47. Miller, C. N. J. Implications of fossil conifers for the phylogenetic relationships of living families. Bot. Rev. 65, 239–277 (1999)

    Article  Google Scholar 

  48. Doyle, J. A. & Hotton, C. L. in Pollen and Spores: Patterns of Diversification (eds Blackmore, S. & Barnes, S. H. ) 169–195 (Clarendon, 1991)

    Google Scholar 

  49. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006)

    CAS  Article  Google Scholar 

  50. Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725–736 (1994)

    CAS  PubMed  Google Scholar 

  51. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997)

    CAS  Google Scholar 

  52. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature Genet. 25, 25–29 (2000)

    CAS  Article  Google Scholar 

  53. Zdobnov, E. M. & Apweiler, R. InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848 (2001)

    CAS  Article  Google Scholar 

  54. Du, Z., Zhou, X., Ling, Y., Zhang, Z. & Su, Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, W64–W70 (2010)

    CAS  Article  Google Scholar 

Download references


This work was supported primarily by NSF Plant Genome Research Program (DEB 0638595, The Ancestral Angiosperm Genome Project) and in part by the Department of Biology and by the Huck Institutes of Life Sciences of the Pennsylvania State University. H.M. was also supported by funds from Fudan University. We thank J. Carlson, M. Frohlich, S. DiLoretto, L. Warg, S. Crutchfield, C. Johnson, N. Naznin, X. Zhou, J. Duarte, B. J. Bliss, J. Der and E. Wafula for help and discussion, D. Stevenson and C. Schultz for Zamia samples, J. McNeal, S. Kim and M. Axtell for photographs, and all the members of The Genome Center at Washington University production team, especially L. Fulton, K. Delehaunty and C. Fronick.

Author information

Authors and Affiliations



Y.J. and C.W.d. designed the study and Y.J. performed the principal data analyses. A.S.C., L.L., P.E.R., Y.H., S.E.S. and H.L. prepared tissues, RNAs, and/or libraries. S.W.C., L.P.T. and S.C.S. generated sequence data. S.A. and J.L.-M. performed the Ancestral Angiosperm Genome Project transcriptome assemblies and MAGIC database construction. Y.J. and C.W.d. drafted the manuscript, and N.J.W., A.S.C., L.L. P.E.R., P.S.S., D.E.S., H.M. and J.L-M. contributed to the planning and discussion of the research and the editing of the manuscript. All authors contributed to and approved the final manuscript.

Corresponding author

Correspondence to Claude W. dePamphilis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Alignments and phylogenetic trees have been deposited in Dryad with package identifier doi:10.5061/dryad.8546.

Supplementary information

Supplementary Information 1

The file contains a Supplementary Discussion, Supplementary References, Supplementary Tables 1-5 and Supplementary Figures 1-8 with legends. (PDF 2117 kb)

Supplementary Table 1

Additional File 1 displays a list of 799 orthogroups with Monocot + Eudicot duplication. (XLS 1635 kb)

Supplementary Table 2

Additional File 2 displays the number of ancient duplications found in orthogroups in all four analyses. (XLS 124 kb)

Supplementary Table 3

Additional File 3 displays data on significant enrichment of GO-SLIM term for the orthogroups with ancient duplication measured by Fisher’s exact test followed by multiple testing corrections. (XLS 27 kb)

Supplementary Information 2

Additional File 4 shows plot of the genomic positions of paralogous pairs of Vitis vinifera genes that arose from duplications prior to the divergence of monocots and eudicots. (PDF 11308 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiao, Y., Wickett, N., Ayyampalayam, S. et al. Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing