Abstract
How is diversity maintained? Environmental heterogeneity is considered to be important1, yet diversity in seemingly homogeneous environments is nonetheless observed2. This, it is assumed, must either be owing to weak selection, mutational input or a fitness advantage to genotypes when rare1. Here we demonstrate the possibility of a new general mechanism of stable diversity maintenance, one that stems from metabolic and physiological trade-offs3. The model requires that such trade-offs translate into a fitness landscape in which the most fit has unfit near-mutational neighbours, and a lower fitness peak also exists that is more mutationally robust. The ‘survival of the fittest’ applies at low mutation rates, giving way to ‘survival of the flattest’4,5,6 at high mutation rates. However, as a consequence of quasispecies-level negative frequency-dependent selection and differences in mutational robustness we observe a transition zone in which both fittest and flattest coexist. Although diversity maintenance is possible for simple organisms in simple environments, the more trade-offs there are, the wider the maintenance zone becomes. The principle may be applied to lineages within a species or species within a community, potentially explaining why competitive exclusion need not be observed in homogeneous environments. This principle predicts the enigmatic richness of metabolic strategies in clonal bacteria7 and questions the safety of lethal mutagenesis8,9 as an antimicrobial treatment.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000)
Maharjan, R., Seeto, S., Notley-McRobb, L. & Ferenci, T. Clonal adaptive radiation in a constant environment. Science 313, 514–517 (2006)
Gudelj, I., Beardmore, R. E., Arkin, S. S. & MacLean, R. C. Constraints on microbial metabolism drive evolutionary diversification in homogeneous environments. J. Evol. Biol. 20, 1882–1889 (2007)
Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E. & Adami, C. Evolution of digital organisms at high mutation rates leads to survival of the flattest. Nature 412, 331–333 (2001)
Sanjuán, R., Cuevas, J. M., Furio, V., Holmes, E. C. & Moya, A. Selection for robustness in mutagenized RNA viruses. PLoS Genet. 3 (6), e93. 939–946 (2007)
Codoñer, F. M., Daros, J. A., Sole, R. V. & Elena, S. F. The fittest versus the flattest: Experimental confirmation of the quasispecies effect with subviral pathogens. PLoS Pathog. 2 (12), e136. 1187–1193 (2006)
Maharjan, R. P., Seeto, S. & Ferenci, T. Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J. Bacteriol. 189, 2350–2358 (2007)
Loeb, L. A. et al. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proc. Natl Acad. Sci. USA 96, 1492–1497 (1999)
Bull, J. J. & Wilke, C. O. Lethal mutagenesis of bacteria. Genetics 180, 1061–1070 (2008)
Koch, A. L. The pertinence of the periodic selection phenomenon to prokaryote evolution. Genetics 77, 127–142 (1974)
Levin, B. R. Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99, 1–23 (1981)
Turner, P. E., Souza, V. & Lenski, R. E. Tests of ecological mechanisms promoting the stable coexistence of two bacterial genotypes. Ecology 77, 2119–2129 (1996)
Pfeiffer, T. & Bonhoeffer, S. Evolution of cross-feeding in microbial populations. Am. Nat. 163, E126–E135 (2004)
Pfeiffer, T., Schuster, S. & Bonhoeffer, S. Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504–507 (2001)
Molenaar, D., van Berlo, R., de Ridder, D. & Teusink, B. Shifts in growth strategies reflect tradeoffs in cellular economics. Mol. Syst. Biol. 5 323 10.1038/msb.2009.82 (2009)
Doebeli, M. & Ispolatov, I. Complexity and diversity. Science 328, 494–497 (2010)
Novak, M., Pfeiffer, T., Lenski, R. E., Sauer, U. & Bonhoeffer, S. Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli . Am. Nat. 168, 242–251 (2006)
Weusthuis, R. A., Pronk, J. T., van den Broek, P. J. & van Dijken, J. P. Chemostat cultivation as a tool for studies on sugar transport in yeasts. Microbiol. Mol. Biol. Rev. 58, 616–630 (1994)
Kreft, J. U. Biofilms promote altruism. Microbiology 150, 2751–2760 (2004)
Lipson, D. A., Monson, R. K., Schmidt, S. K. & Weintraub, M. N. The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest. Biogeochemistry 95, 23–35 (2009)
Marusyk, A. & Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta. Rev. Cancer 1805, 105–117 (2010)
Gillies, R. & Gatenby, R. Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? J. Bioenerg. Biomembr. 39, 251–257 (2007)
Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956)
Krak, N. et al. Blood flow and glucose metabolism in stage IV breast cancer: heterogeneity of response during chemotherapy. Mol. Imaging Biol. 10, 356–363 (2008)
Bjedov, I. et al. Stress-induced mutagenesis in bacteria. Science 300, 1404–1409 (2003)
Martin, G. & Gandon, S. Lethal mutagenesis and evolutionary epidemiology. Phil. Trans. R. Soc. Lond. B 365, 1953–1963 (2010)
Keller, H. B. in Applications of Bifurcation Theory (ed. Rabinowitz, P.) (Academic Press, 1977)
Acknowledgements
We thank C. Burch, M. Doebeli and T. Ferenci for discussions. L.D.H. is a Royal Society Wolfson Research Merit Award Holder, R.E.B. holds an EPSRC Leadership Fellowship, and I.G. holds a NERC Advanced Research Fellowship.
Author information
Authors and Affiliations
Contributions
R.E.B. and I.G. wrote the paper, conceived the paper, designed analyses and performed analysis, D.A.L. wrote the paper and performed analysis, L.D.H. wrote the paper, conceived the paper and designed analyses.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Text and Data, Supplementary Figures 1-26 with legends and additional references. See Table of Contents on page 1 for full details. (PDF 1496 kb)
Rights and permissions
About this article
Cite this article
Beardmore, R., Gudelj, I., Lipson, D. et al. Metabolic trade-offs and the maintenance of the fittest and the flattest. Nature 472, 342–346 (2011). https://doi.org/10.1038/nature09905
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature09905
This article is cited by
-
An interplay of resource availability, population size and mutation rate potentiates the evolution of metabolic signaling
BMC Ecology and Evolution (2021)
-
Cell population heterogeneity driven by stochastic partition and growth optimality
Scientific Reports (2019)
-
Eliciting the impacts of cellular noise on metabolic trade-offs by quantitative mass imaging
Nature Communications (2019)
-
Ecological effects of cellular computing in microbial populations
Natural Computing (2018)
-
Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism
BMC Systems Biology (2017)