Biodiversity improves water quality through niche partitioning

Abstract

Excessive nutrient loading of water bodies is a leading cause of water pollution worldwide1,2, and controlling nutrient levels in watersheds is a primary objective of most environmental policy3. Over the past two decades, much research has shown that ecosystems with more species are more efficient at removing nutrients from soil and water than are ecosystems with fewer species4,5,6,7. This has led some to suggest that conservation of biodiversity might be a useful tool for managing nutrient uptake and storage7,8,9,10, but this suggestion has been controversial, in part because the specific biological mechanisms by which species diversity influences nutrient uptake have not been identified10,11,12. Here I use a model system of stream biofilms to show that niche partitioning among species of algae can increase the uptake and storage of nitrate, a nutrient pollutant of global concern. I manipulated the number of species of algae growing in the biofilms of 150 stream mesocosms that had been set up to mimic the variety of flow habitats and disturbance regimes that are typical of natural streams. Nitrogen uptake rates, as measured by using 15N-labelled nitrate, increased linearly with species richness and were driven by niche differences among species. As different forms of algae came to dominate each unique habitat in a stream, the more diverse communities achieved a higher biomass and greater 15N uptake. When these niche opportunities were experimentally removed by making all of the habitats in a stream uniform, diversity did not influence nitrogen uptake, and biofilms collapsed to a single dominant species. These results provide direct evidence that communities with more species take greater advantage of the niche opportunities in an environment, and this allows diverse systems to capture a greater proportion of biologically available resources such as nitrogen. One implication is that biodiversity may help to buffer natural ecosystems against the ecological impacts of nutrient pollution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Algal diversity effects on NO 3 , algal biomass and final population sizes.
Figure 2: Niche partitioning by algae.

References

  1. 1

    Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7, 737–750 (1997)

    Google Scholar 

  2. 2

    Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009)

    Article  Google Scholar 

  4. 4

    Spehn, E. M. et al. Ecosystem effects of biodiversity manipulations in European grasslands. Ecol. Monogr. 75, 37–63 (2005)

    Article  Google Scholar 

  5. 5

    Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bracken, M. E. S. & Stachowicz, J. J. Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium. Ecology 87, 2397–2403 (2006)

    Article  Google Scholar 

  7. 7

    Tilman, D., Wedin, D. & Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379, 718–720 (1996)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Scherer-Lorenzen, M., Palmborg, C., Prinz, A. & Schulze, E. D. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology 84, 1539–1552 (2003)

    Article  Google Scholar 

  9. 9

    Reich, P. B. et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature 410, 809–812 (2001)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005)

    Article  Google Scholar 

  11. 11

    Huston, M. A. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110, 449–460 (1997)

    ADS  Article  Google Scholar 

  12. 12

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Carpenter, S. R. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998)

    Article  Google Scholar 

  14. 14

    Dodds, W. K. Eutrophication and trophic state in rivers and streams. Limnol. Oceanogr. 51, 671–680 (2006)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Mulholland, P. J. et al. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452, 202–205 (2008)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Alexander, R. B., Smith, R. A. & Schwarz, G. E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature 403, 758–761 (2000)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Anderson, D. M., Glibert, P. M. & Burkholder, J. M. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25, 704–726 (2002)

    Article  Google Scholar 

  18. 18

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Dodds, W. K. et al. Eutrophication of US freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2009)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tilman, D., Lehman, D. & Thompson, K. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Chapin, F. S. et al. Biotic control over the functioning of ecosystems. Science 277, 500–504 (1997)

    CAS  Article  Google Scholar 

  22. 22

    Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011)

    Article  Google Scholar 

  23. 23

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000)

    Article  Google Scholar 

  24. 24

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Peterson, C. G. & Stevenson, R. J. Resistance and resilience of lotic algal communities: importance of disturbance timing and current. Ecology 73, 1445–1461 (1992)

    Article  Google Scholar 

  26. 26

    Biggs, B. J. F. & Thomsen, H. A. Disturbance of stream periphyton by perturbations in shear stress: time to structural failure and differences in community resistance. J. Phycol. 31, 233–241 (1995)

    Article  Google Scholar 

  27. 27

    Steinman, A. D. & McIntire, C. D. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. J. Phycol. 22, 352–361 (1986)

    Article  Google Scholar 

  28. 28

    Pringle, C. M. Patch dynamics in lotic systems: the stream as a mosaic. J. N. Am. Benthol. Soc. 7, 503–524 (1988)

    Article  Google Scholar 

  29. 29

    Poff, N. L., Olden, J. D., Merritt, D. M. & Pepin, D. M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl Acad. Sci. USA 104, 5732–5737 (2007)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Cardinale, B. J., Bennett, D. M., Nelson, C. E. & Gross, K. Does productivity drive diversity or vice versa? A test of the multivariate productivity–diversity hypothesis in streams. Ecology 90, 1227–1241 (2009)

    Article  Google Scholar 

  31. 31

    Biggs, B. J. F., Goring, D. G. & Nikora, V. I. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J. Phycol. 34, 598–607 (1998)

    Article  Google Scholar 

  32. 32

    Passy, S. I. Spatial paradigms of lotic diatom distribution: a landscape ecology perspective. J. Phycol. 37, 370–378 (2001)

    Article  Google Scholar 

  33. 33

    Biggs, B. J. F., Stevenson, R. J. & Lowe, R. L. A habitat matrix conceptual model for stream periphyton. Arch. Hydrobiol. 143, 21–56 (1998)

    Article  Google Scholar 

  34. 34

    Stevenson, R. J. Effects of current and conditions simulating autogenically changing microhabitats on benthic diatom immigration. Ecology 64, 1514–1524 (1983)

    Article  Google Scholar 

  35. 35

    Andersen, R. A. Algal Culturing Techniques (Elsevier/Academic, 2005)

    Google Scholar 

  36. 36

    Vogel, S. & LaBarbera, M. Simple flow tanks for research and teaching. Bioscience 28, 638–645 (1978)

    Article  Google Scholar 

  37. 37

    Hubbell, S. P. et al. How many tree species are there in the Amazon and how many of them will go extinct? Proc. Natl Acad. Sci. USA 105, 11498–11504 (2008)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Stevenson, R. J. in Algal Ecology: Freshwater Benthic Ecosystems (eds Stevenson, R. J., Bothwell, M. L. & Lowe, R. L. ) 321–336 (Academic, 1996)

    Google Scholar 

  39. 39

    Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784 (1997)

    Article  Google Scholar 

  40. 40

    Townsend, C. R. et al. Disturbance, resource supply, and food-web architecture in streams. Ecol. Lett. 1, 200–209 (1998)

    Article  Google Scholar 

  41. 41

    Cooper, S., Barmuta, L., Sarnelle, O., Kratz, K. & Diehl, S. Quantifying spatial heterogeneity in streams. J. N. Am. Benthol. Soc. 16, 174–188 (1997)

    Article  Google Scholar 

  42. 42

    Townsend, C. R. The patch dynamics concept of stream community ecology. J. N. Am. Benthol. Soc. 8, 36–50 (1989)

    Article  Google Scholar 

  43. 43

    Steinman, A. D. & Lamberti, G. A. in Methods in Stream Ecology (eds Hauer, F. R. & Lamberti, G. A. ) 295–311 (Academic, 1996)

    Google Scholar 

  44. 44

    Nusch, E. A. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14, 14–36 (1980)

    CAS  Google Scholar 

  45. 45

    Fry, B. Stable Isotope Ecology (Springer, 2006)

    Google Scholar 

  46. 46

    Legendre, L. & Gosselin, M. Estimation of N or C uptake rates by phytoplankton using N-15 or C-13: revisiting the usual computation formulae. J. Plankton Res. 19, 263–271 (1997)

    Article  Google Scholar 

  47. 47

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004)

    Article  Google Scholar 

  48. 48

    Carroll, I. T., Cardinale, B. J. & Nisbet, R. M. Niche and fitness differences relate the maintenance of diversity to ecosystem function. Ecology (in the press)

  49. 49

    Loreau, M. Does functional redundancy exist? Oikos 104, 606–611 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Byrnes, W. Dodds, J. Levine and A. Steinman for comments that improved the manuscript. D. Bennett, K. Matulich, L. Power and J. Weis helped to set up and run the experiment. M. Potapova provided images of the algae in Fig. 2. This work was funded by grants from the US National Science Foundation (DEB 0614428 and DEB 1046121).

Author information

Affiliations

Authors

Contributions

B.J.C. designed the study, collected data with the assistance of those mentioned in the Acknowledgements, analysed the data and wrote the paper.

Corresponding author

Correspondence to Bradley J. Cardinale.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2 and Supplementary Figure 1 with a legend. (PDF 227 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cardinale, B. Biodiversity improves water quality through niche partitioning. Nature 472, 86–89 (2011). https://doi.org/10.1038/nature09904

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing