Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Circuit cavity electromechanics in the strong-coupling regime

Abstract

Demonstrating and exploiting the quantum nature of macroscopic mechanical objects would help us to investigate directly the limitations of quantum-based measurements and quantum information protocols, as well as to test long-standing questions about macroscopic quantum coherence1,2,3. Central to this effort is the necessity of long-lived mechanical states. Previous efforts have witnessed quantum behaviour4, but for a low-quality-factor mechanical system. The field of cavity optomechanics and electromechanics5,6, in which a high-quality-factor mechanical oscillator is parametrically coupled to an electromagnetic cavity resonance, provides a practical architecture for cooling, manipulation and detection of motion at the quantum level1. One requirement is strong coupling7,8,9, in which the interaction between the two systems is faster than the dissipation of energy from either system. Here, by incorporating a free-standing, flexible aluminium membrane into a lumped-element superconducting resonant cavity, we have increased the single-photon coupling strength between these two systems by more than two orders of magnitude, compared to previously obtained coupling strengths. A parametric drive tone at the difference frequency between the mechanical oscillator and the cavity resonance dramatically increases the overall coupling strength, allowing us to completely enter the quantum-enabled, strong-coupling regime. This is evidenced by a maximum normal-mode splitting of nearly six bare cavity linewidths. Spectroscopic measurements of these ‘dressed states’ are in excellent quantitative agreement with recent theoretical predictions10,11. The basic circuit architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of long-lived quantum states of mechanical motion.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic description of the experiment.
Figure 2: Characterization of mechanical and microwave resonances.
Figure 3: Demonstration of the strong-coupling regime.
Figure 4: Spectroscopy in the strong-coupled regime.

References

  1. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992)

    Book  Google Scholar 

  2. Mancini, S., Man'ko, V. I. & Tombesi, P. Ponderomotive control of quantum macroscopic coherence. Phys. Rev. A 55, 3042–3050 (1997)

    ADS  CAS  Article  Google Scholar 

  3. Bose, S., Jacobs, K. & Knight, P. L. Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175–4186 (1997)

    ADS  CAS  Article  Google Scholar 

  4. O'Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    ADS  CAS  Article  Google Scholar 

  5. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008)

    ADS  CAS  Article  Google Scholar 

  6. Marquardt, F. & Girvin, S. M. Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  7. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    ADS  Article  Google Scholar 

  8. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    ADS  CAS  Article  Google Scholar 

  9. Dobrindt, J. M., Wilson-Rae, I. & Kippenberg, T. J. Parametric normal-mode splitting in cavity optomechanics. Phys. Rev. Lett. 101, 263602 (2008)

    ADS  CAS  Article  Google Scholar 

  10. Agarwal, G. S. & Huang, S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010)

    ADS  Article  Google Scholar 

  11. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010)

    ADS  CAS  Article  Google Scholar 

  12. Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)

    ADS  Article  Google Scholar 

  13. Diedrich, F., Bergquist, J. C., Itano, W. M. & Wineland, D. J. Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403–406 (1989)

    ADS  CAS  Article  Google Scholar 

  14. Gröblacher, S., Hammerer, K., Vanner, M. R. & Aspelmeyer, M. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature 460, 724–727 (2009)

    ADS  Article  Google Scholar 

  15. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008)

    ADS  CAS  Article  Google Scholar 

  16. Braginsky, V. B., Manukin, A. B. & Tikhonov, M. Y. Investigation of dissipative ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 31, 829–830 (1970)

    ADS  Google Scholar 

  17. Linthorne, N. P., Veitch, P. J. & Blair, D. G. Interaction of a parametric transducer with a resonant bar gravitational radiation detector. J. Phys. D 23, 1–6 (1990)

    ADS  CAS  Article  Google Scholar 

  18. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008)

    CAS  Article  Google Scholar 

  19. Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008)

    ADS  CAS  Article  Google Scholar 

  20. Rocheleau, T. et al. Preparation and detection of a mechanical resonator near the ground state of motion. Nature 463, 72–75 (2010)

    ADS  CAS  Article  Google Scholar 

  21. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nature Nanotechnol. 4, 820–823 (2009)

    ADS  CAS  Article  Google Scholar 

  22. Hertzberg, J. B. et al. Back-action-evading measurements of nanomechanical motion. Nature Phys. 6, 213–217 (2010)

    ADS  CAS  Article  Google Scholar 

  23. Cicak, K. et al. Low-loss superconducting resonant circuits using vacuum-gap-based microwave components. Appl. Phys. Lett. 96, 093502 (2010)

    ADS  Article  Google Scholar 

  24. Blencowe, M. P. & Buks, E. Quantum analysis of a linear dc squid mechanical displacement detector. Phys. Rev. B 76, 014511 (2007)

    ADS  Article  Google Scholar 

  25. Boller, K.-J., Imamolu, A. & Harris, S. E. Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991)

    ADS  CAS  Article  Google Scholar 

  26. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)

    ADS  CAS  Article  Google Scholar 

  27. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  28. Castellanos-Beltran, M. A., Irwin, K. D., Hilton, G. C., Vale, L. R. & Lehnert, K. W. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008)

    ADS  Article  Google Scholar 

  29. Akram, U., Kiesel, N., Aspelmeyer, M. & Milburn, G. J. Single-photon opto-mechanics in the strong coupling regime. N. J. Phys. 12, 083030 (2010)

    Article  Google Scholar 

  30. Regal, C. A. & Lehnert, K. W. From cavity electromechanics to cavity optomechanics. J. Phys. Conf. Ser. 264, 012025 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. W. Sanders for taking the micrograph in Fig. 1b, and acknowledge discussions with T. Donner, J. H. Harlow and K. W. Lehnert. This paper is a contribution by the National Institute of Standards and Technology and not subject to US copyright.

Author information

Authors and Affiliations

Authors

Contributions

J.D.T. and R.W.S. conceived the device. J.D.T. designed the circuit. J.D.T. and D.L. fabricated the devices. J.D.T. performed and analysed the measurements. R.W.S. oversaw all aspects of this work. All authors provided experimental support and commented on the manuscript.

Corresponding author

Correspondence to J. D. Teufel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teufel, J., Li, D., Allman, M. et al. Circuit cavity electromechanics in the strong-coupling regime. Nature 471, 204–208 (2011). https://doi.org/10.1038/nature09898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09898

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing