Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin–orbit-coupled Bose–Einstein condensates


Spin–orbit (SO) coupling—the interaction between a quantum particle’s spin and its momentum—is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect1,2 and topological insulators3,4,5; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices6. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom’s intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba7 and Dresselhaus8 strengths) in a neutral atomic Bose–Einstein condensate by dressing two atomic spin states with a pair of lasers9. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling—equally applicable for bosons and fermions—sets the stage for the realization of topological insulators in fermionic neutral atom systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for creating SO coupling.
Figure 2: Phases of a SO-coupled BEC.
Figure 3: Population relaxation.
Figure 4: Miscible to immiscible phase transition.


  1. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Konig, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007)

    Article  ADS  Google Scholar 

  3. Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  CAS  Google Scholar 

  4. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009)

    Article  ADS  CAS  Google Scholar 

  7. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039 (1984)

    Article  ADS  Google Scholar 

  8. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955)

    Article  ADS  CAS  Google Scholar 

  9. Liu, X.-J., Borunda, M. F., Liu, X. & Sinova, J. Effect of induced spin-orbit coupling for atoms via laser fields. Phys. Rev. Lett. 102, 046402 (2009)

    Article  ADS  Google Scholar 

  10. Quay, C. H. L. et al. Observation of a one-dimensional spin-orbit gap in a quantum wire. Nature Phys. 6, 336–339 (2010)

    Article  ADS  CAS  Google Scholar 

  11. von Klitzing, K., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  ADS  CAS  Google Scholar 

  12. Ruseckas, J., Juzeliu¯nas, G., Öhberg, P. & Fleischhauer, M. Non-abelian gauge potentials for ultracold atoms with degenerate dark states. Phys. Rev. Lett. 95, 010404 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Stanescu, T. D., Zhang, C. & Galitski, V. Nonequilibrium spin dynamics in a trapped Fermi gas with effective spin-orbit interactions. Phys. Rev. Lett. 99, 110403 (2007)

    Article  ADS  Google Scholar 

  14. Dalibard, J., Gerbier, F., Juzeliu¯nas, G. & Öhberg, P. Artificial gauge potentials for neutral atoms. Preprint at 〈〉 (2010)

  15. Higbie, J. & Stamper-Kurn, D. M. Generating macroscopic quantum-superposition states in momentum and internal-state space from Bose-Einstein condensates with repulsive interactions. Phys. Rev. A 69, 053605 (2004)

    Article  ADS  Google Scholar 

  16. Lin, Y.-J. et al. Bose-Einstein condensate in a uniform light-induced vector potential. Phys. Rev. Lett. 102, 130401 (2009)

    Article  ADS  Google Scholar 

  17. Lin, Y.-J. et al. A synthetic electric force acting on neutral atoms. Nature Phys. (in the press); preprint at 〈〉 (2010)

  18. Lin, Y. J., Compton, R. L., Jimenez-Garcia, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Chang, M.-S. et al. Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein condensates. Phys. Rev. Lett. 92, 140403 (2004)

    Article  ADS  Google Scholar 

  21. Ho, T.-L. Spinor Bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Widera, A. et al. Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms. N. J. Phys. 8, 152 (2006)

    Article  Google Scholar 

  23. Ho, T.-L. & Zhang, S. Bose–Einstein condensates in non-abelian gauge fields. Preprint at 〈〉 (2010)

  24. Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E. & Cornell, E. A. Dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Erhard, M., Schmaljohann, H., Kronjäger, J., Bongs, K. & Sengstock, K. Measurement of a mixed-spin-channel Feshbach resonance in 87Rb. Phys. Rev. A 69, 032705 (2004)

    Article  ADS  Google Scholar 

  26. Kobayashi, M., Kawaguchi, Y., Nitta, M. & Ueda, M. Collision dynamics and rung formation of non-abelian vortices. Phys. Rev. Lett. 103, 115301 (2009)

    Article  ADS  Google Scholar 

  27. Goldman, N. et al. Realistic time-reversal invariant topological insulators with neutral atoms. Phys. Rev. Lett. 105, 255302 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Zhang, C., Tewari, S., Lutchyn, R. M. & Das Sarma, S. p x + ip y superfluid from s-wave interactions of fermionic cold atoms. Phys. Rev. Lett. 101, 160401 (2008)

    Article  ADS  Google Scholar 

  29. Sau, J. D., Tewari, S., Lutchyn, R. M., Stanescu, T. D. & Das Sarma, S. Non-Abelian quantum order in spin-orbit-coupled semiconductors: search for topological Majorana particles in solid-state systems. Phys. Rev. B 82, 214509 (2010)

    Article  ADS  Google Scholar 

  30. Lin, Y.-J., Perry, A. R., Compton, R. L., Spielman, I. B. & Porto, J. V. Rapid production of 87Rb Bose-Einstein condensates in a combined magnetic and optical potential. Phys. Rev. A 79, 063631 (2009)

    Article  ADS  Google Scholar 

Download references


We thank E. Demler, T.-L. Ho and H. Zhai for conceptual input; and we appreciate conversations with J. V. Porto and W. D. Phillips. This work was partially supported by ONR, ARO with funds from the DARPA OLE programme, and the NSF through the Physics Frontier Center at the Joint Quantum Institute. K.J.-G. acknowledges CONACYT.

Author information

Authors and Affiliations



All authors contributed to writing of the manuscript. Y.-J. L. led the data-taking effort in which K.J.-G. participated. I.B.S. conceived the experiment; performed numerical and analytic calculations; and supervised this work.

Corresponding author

Correspondence to I. B. Spielman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, YJ., Jiménez-García, K. & Spielman, I. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing