Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III

Abstract

CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans-encoded small RNA with 24-nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A newly identified tracrRNA is required for crRNA maturation in S. pyogenes.
Figure 2: Co-processing of tracrRNA and pre-crRNA requires both endogenous RNase III and Csn1 in vivo.
Figure 3: tracrRNA directs pre-crRNA cleavage by RNase III in vitro.
Figure 4: Model for tracrRNA-mediated crRNA maturation involving RNase III and Csn1.
Figure 5: Both tracrRNA and pre-crRNA confer immunity against acquisition of a protospacer gene derived from a lysogenic phage.
Figure 6: tracrRNA-mediated crRNA maturation is conserved among different bacterial species.

Similar content being viewed by others

References

  1. Aliyari, R. & Ding, S. W. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol. Rev. 227, 176–188 (2009)

    Article  CAS  Google Scholar 

  2. Carthew, R. W. & Sontheimer, E. J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009)

    Article  CAS  Google Scholar 

  3. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008)

    Article  CAS  Google Scholar 

  4. Jinek, M. & Doudna, J. A. A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Malone, C. D. & Hannon, G. J. Small RNAs as guardians of the genome. Cell 136, 656–668 (2009)

    Article  CAS  Google Scholar 

  6. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Deveau, H., Garneau, J. E. & Moineau, S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu. Rev. Microbiol. 64, 475–493 (2010)

    Article  CAS  Google Scholar 

  10. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010)

    Article  ADS  CAS  Google Scholar 

  11. Koonin, E. V. & Makarova, K. S. CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biol. Rep. 1, 95 (2009)

    PubMed  PubMed Central  Google Scholar 

  12. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet. 11, 181–190 (2010)

    Article  CAS  Google Scholar 

  13. Sorek, R., Kunin, V. & Hugenholtz, P. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Rev. Microbiol. 6, 181–186 (2008)

    Article  CAS  Google Scholar 

  14. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009)

    Article  CAS  Google Scholar 

  15. Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005)

    Article  CAS  Google Scholar 

  17. Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005)

    Article  CAS  Google Scholar 

  18. van der Oost, J. & Brouns, S. J. RNAi: prokaryotes get in on the act. Cell 139, 863–865 (2009)

    Article  CAS  Google Scholar 

  19. Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002)

    Article  CAS  Google Scholar 

  20. Mojica, F. J., Ferrer, C., Juez, G. & Rodriguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17, 85–93 (1995)

    Article  CAS  Google Scholar 

  21. Nakata, A., Amemura, M. & Makino, K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171, 3553–3556 (1989)

    Article  CAS  Google Scholar 

  22. Waters, L. S. & Storz, G. Regulatory RNAs in bacteria. Cell 136, 615–628 (2009)

    Article  CAS  Google Scholar 

  23. Makarova, K. S., Aravind, L., Grishin, N. V., Rogozin, I. B. & Koonin, E. V. A. DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 30, 482–496 (2002)

    Article  CAS  Google Scholar 

  24. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008)

    Article  ADS  CAS  Google Scholar 

  26. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009)

    Article  CAS  Google Scholar 

  27. Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568–571 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Carte, J., Wang, R., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008)

    Article  CAS  Google Scholar 

  29. Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Carte, J., Pfister, N. T., Compton, M. M., Terns, R. M. & Terns, M. P. Binding and cleavage of CRISPR RNA by Cas6. RNA 16, 2181–2188 (2010)

    Article  CAS  Google Scholar 

  32. Haft, D. H., Selengut, J., Mongodin, E. F. & Nelson, K. E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol. 1, e60 (2005)

    Article  ADS  Google Scholar 

  33. Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y. I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7 (2006)

    Article  Google Scholar 

  34. Vojtek, I. et al. Lysogenic transfer of group A Streptococcus superantigen gene among streptococci. J. Infect. Dis. 197, 225–234 (2008)

    Article  CAS  Google Scholar 

  35. Fischetti, V. A. In vivo acquisition of prophage in Streptococcus pyogenes. Trends Microbiol. 15, 297–300 (2007)

    Article  CAS  Google Scholar 

  36. Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004)

    Article  Google Scholar 

  37. Banks, D. J., Beres, S. B. & Musser, J. M. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 10, 515–521 (2002)

    Article  CAS  Google Scholar 

  38. Aziz, R. K. et al. Mosaic prophages with horizontally acquired genes account for the emergence and diversification of the globally disseminated M1T1 clone of Streptococcus pyogenes. J. Bacteriol. 187, 3311–3318 (2005)

    Article  CAS  Google Scholar 

  39. Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250–255 (2010)

    Article  ADS  CAS  Google Scholar 

  40. Drider, D. & Condon, C. The continuing story of endoribonuclease III. J. Mol. Microbiol. Biotechnol. 8, 195–200 (2004)

    Article  Google Scholar 

  41. Huntzinger, E. et al. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J. 24, 824–835 (2005)

    Article  CAS  Google Scholar 

  42. Nicholson, A. W. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol. Rev. 23, 371–390 (1999)

    Article  CAS  Google Scholar 

  43. Vogel, J., Argaman, L., Wagner, E. G. & Altuvia, S. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol. 14, 2271–2276 (2004)

    Article  CAS  Google Scholar 

  44. Opdyke, J. A., Fozo, E. M., Hemm, M. R. & Storz, G. RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. J. Mol. Biol. 406, 29–43 (2010)

    Article  Google Scholar 

  45. Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol. 11, 214–218 (2004)

    Article  CAS  Google Scholar 

  46. Condon, C. Maturation and degradation of RNA in bacteria. Curr. Opin. Microbiol. 10, 271–278 (2007)

    Article  CAS  Google Scholar 

  47. Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61 (2007)

    Article  Google Scholar 

  48. Mangold, M. et al. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol. Microbiol. 53, 1515–1527 (2004)

    Article  CAS  Google Scholar 

  49. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008)

    Article  CAS  Google Scholar 

  50. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: a Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, 1989)

    Google Scholar 

  51. Caparon, M. G. & Scott, J. R. Genetic manipulation of pathogenic streptococci. Methods Enzymol. 204, 556–586 (1991)

    Article  CAS  Google Scholar 

  52. Charpentier, E. et al. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. 70, 6076–6085 (2004)

    Article  CAS  Google Scholar 

  53. Arnaud, M., Chastanet, A. & Debarbouille, M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 70, 6887–6891 (2004)

    Article  CAS  Google Scholar 

  54. Siller, M. et al. Functional analysis of the group A streptococcal luxS/AI-2 system in metabolism, adaptation to stress and interaction with host cells. BMC Microbiol. 8, 188 (2008)

    Article  Google Scholar 

  55. Urban, J. H. & Vogel, J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res. 35, 1018–1037 (2007)

    Article  CAS  Google Scholar 

  56. Sittka, A. et al. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 4, e1000163 (2008)

    Article  Google Scholar 

  57. Herbert, S., Barry, P. & Novick, R. P. Subinhibitory clindamycin differentially inhibits transcription of exoprotein genes in Staphylococcus aureus. Infect. Immun. 69, 2996–3003 (2001)

    Article  CAS  Google Scholar 

  58. Pall, G. S. & Hamilton, A. J. Improved northern blot method for enhanced detection of small RNA. Nature Protocols 3, 1077–1084 (2008)

    Article  CAS  Google Scholar 

  59. Roberts, C. et al. Characterizing the effect of the Staphylococcus aureus virulence factor regulator, SarA, on log-phase mRNA half-lives. J. Bacteriol. 188, 2593–2603 (2006)

    Article  CAS  Google Scholar 

  60. Britton, R. A. et al. Maturation of the 5′ end of Bacillus subtilis 16S rRNA by the essential ribonuclease YkqC/RNase J1. Mol. Microbiol. 63, 127–138 (2007)

    Article  CAS  Google Scholar 

  61. Sittka, A., Pfeiffer, V., Tedin, K. & Vogel, J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol. Microbiol. 63, 193–217 (2007)

    Article  CAS  Google Scholar 

  62. Papenfort, K. et al. SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62, 1674–1688 (2006)

    Article  CAS  Google Scholar 

  63. Kingsford, C. L., Ayanbule, K. & Salzberg, S. L. Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol. 8, R22 (2007)

    Article  Google Scholar 

  64. Denman, R. B. Using RNAFOLD to predict the activity of small catalytic RNAs. Biotechniques 15, 1090–1095 (1993)

    CAS  PubMed  Google Scholar 

  65. Hofacker, I. L. & Stadler, P. F. Memory efficient folding algorithms for circular RNA secondary structures. Bioinformatics 22, 1172–1176 (2006)

    Article  CAS  Google Scholar 

  66. Darty, K., Denise, A. & Ponty, Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics 25, 1974–1975 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Veit for technical help. This work was funded by the European Community (FP6, BACRNAs-018618; E.C.), the Austrian Science Fund (FWF, P17238-B09 (E.C.) and W1207-B09 (E.C., K.C.)), the Austrian Agency for Research Promotion (FFG, 812138-SCK/KUG; E.C.), the Theodor Körner Fonds (E.C.), Umeå University (E.C.), the Swedish Research Council (E.C.), IMPRS-IDI (Y.C.), the German Research Council (DFG Priority Program “Sensory and Regulatory RNAs in Prokaryotes” SPP1258, Vo875/4; J.V.), and the German Ministry of Education and Research (BMBF, 01GS0806/JV-BMBF-01 and 0315836; J.V.).

Author information

Authors and Affiliations

Authors

Contributions

E.D., K.C., C.M.S., K.G., J.V. and E.C. designed the research; E.D., K.C., C.M.S., K.G., Z.A.P., Y.C. and M.R.E. conducted the experiments; E.D., K.C., C.M.S., K.G., J.V. and E.C. analysed and interpreted the data; E.C. wrote the paper which E.D., K.C., C.M.S. and J.V. commented on, and supervised the project. Author information and raw data are available from E.D., K.C., C.M.S., J.V. and E.C.

Corresponding author

Correspondence to Emmanuelle Charpentier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-17 with legends and additional references. (PDF 3511 kb)

Supplementary Tables

This file contains Supplementary Tables 1-10 and additional references. (PDF 811 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deltcheva, E., Chylinski, K., Sharma, C. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011). https://doi.org/10.1038/nature09886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09886

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology