Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dampening of death pathways by schnurri-2 is essential for T-cell development

Abstract

Generation of a diverse and self-tolerant T-cell repertoire requires appropriate interpretation of T-cell antigen receptor (TCR) signals by CD4+CD8+ double-positive thymocytes. Thymocyte cell fate is dictated by the nature of TCR–major-histocompatibility-complex (MHC)–peptide interactions, with signals of higher strength leading to death (negative selection) and signals of intermediate strength leading to differentiation (positive selection)1. Molecules that regulate T-cell development by modulating TCR signal strength have been described but components that specifically define the boundaries between positive and negative selection remain unknown. Here we show in mice that repression of TCR-induced death pathways is critical for proper interpretation of positive selecting signals in vivo, and identify schnurri-2 (Shn2; also known as Hivep2) as a crucial death dampener. Our results indicate that Shn2−/− double-positive thymocytes inappropriately undergo negative selection in response to positive selecting signals, thus leading to disrupted T-cell development. Shn2−/− double-positive thymocytes are more sensitive to TCR-induced death in vitro and die in response to positive selection interactions in vivo. However, Shn2-deficient thymocytes can be positively selected when TCR-induced death is genetically ablated. Shn2 levels increase after TCR stimulation, indicating that integration of multiple TCR–MHC–peptide interactions may fine-tune the death threshold. Mechanistically, Shn2 functions downstream of TCR proximal signalling compenents to dampen Bax activation and the mitochondrial death pathway. Our findings uncover a critical regulator of T-cell development that controls the balance between death and differentiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased TCR-induced death in Shn2 −/− thymocytes.
Figure 2: Bim deficiency rescues positive selection in Shn2 −/− mice.
Figure 3: Conversion of positive selection to death in vivo.
Figure 4: Shn2 dampens TCR-induced death in vivo.

Similar content being viewed by others

References

  1. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003)

    Article  CAS  Google Scholar 

  2. Gallo, E. M. et al. Calcineurin sets the bandwidth for discrimination of signals during thymocyte development. Nature 450, 731–735 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Neilson, J. R., Winslow, M. M., Hur, E. M. & Crabtree, G. R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004)

    Article  CAS  Google Scholar 

  4. Alberola-lla, J., Forbush, K. A., Seger, R., Krebs, E. G. & Perlmutter, R. M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995)

    Article  ADS  Google Scholar 

  5. Fischer, A. M., Katayama, C. D., Pagès, G., Pouysségur, J. & Hedrick, S. M. The role of Erk1 and Erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005)

    Article  CAS  Google Scholar 

  6. Arora, K. et al. The Drosophila schnurri gene acts in the Dpp/TGFβ signaling pathway and encodes a transcription factor homologous to the human MBP family. Cell 81, 781–790 (1995)

    Article  CAS  Google Scholar 

  7. Liang, J. et al. The Caenorhabditis elegans schnurri homolog sma-9 mediates stage- and cell type-specific responses to DBL-1 BMP-related signaling. Development 130, 6453–6464 (2003)

    Article  CAS  Google Scholar 

  8. Jin, W. et al. Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev. Cell 10, 461–471 (2006)

    Article  CAS  Google Scholar 

  9. Jones, D. C. et al. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223–1227 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Kimura, M. Y. et al. Schnurri-2 controls memory Th1 and Th2 cell numbers in vivo . J. Immunol. 178, 4926–4936 (2007)

    Article  CAS  Google Scholar 

  11. Takagi, T., Harada, J. & Ishii, S. Murine Schnurri-2 is required for positive selection of thymocytes. Nature Immunol. 2, 1048–1053 (2001)

    Article  CAS  Google Scholar 

  12. Kimura, M. Y. et al. Regulation of T helper type 2 cell differentiation by murine Schnurri-2. J. Exp. Med. 201, 397–408 (2005)

    Article  CAS  Google Scholar 

  13. Cante-Barrett, K., Gallo, E. M., Winslow, M. M. & Crabtree, G. R. Thymocyte negative selection is mediated by protein kinase C- and Ca2+-dependent transcriptional induction of Bim. J. Immunol. 176, 2299–2306 (2006)

    Article  CAS  Google Scholar 

  14. Strasser, A. The role of BH3-only proteins in the immune system. Nature Rev. Immunol. 5, 189–200 (2005)

    Article  CAS  Google Scholar 

  15. Rathmell, J. C., Lindsten, T., Zong, W.-X., Cinalli, R. M. & Thompson, C. B. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nature Immunol. 3, 932–939 (2002)

    Article  CAS  Google Scholar 

  16. Hsu, Y. T. & Youle, R. J. Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829–13834 (1997)

    Article  CAS  Google Scholar 

  17. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002)

    Article  ADS  CAS  Google Scholar 

  18. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988)

    Article  ADS  CAS  Google Scholar 

  19. Jones, D. C. et al. Uncoupling of growth plate maturation and bone formation in mice lacking both Schnurri-2 and Schnurri-3. Proc. Natl Acad. Sci. USA 107, 8254–8258 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Ebert, P. J. R., Ehrlich, L. I. R. & Davis, M. M. Low ligand requirement for deletion and lack of synapses in positive selection enforce the gauntlet of thymic T cell maturation. Immunity 29, 734–745 (2008)

    Article  CAS  Google Scholar 

  21. Bousso, P., Bhakta, N. R., Lewis, R. S. & Robey, E. Dynamics of thymocyte–stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002)

    Article  ADS  CAS  Google Scholar 

  22. Naeher, D. et al. A constant affinity threshold for T cell tolerance. J. Exp. Med. 204, 2553–2559 (2007)

    Article  CAS  Google Scholar 

  23. Cainan, B. J., Szychowski, S., Chan, F. K., Cado, D. & Winoto, A. A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 3, 273–282 (1995)

    Article  Google Scholar 

  24. Hübner, A., Barrett, T., Flavell, R. A. & Davis, R. J. Multisite phosphorylation regulates Bim stability and apoptotic activity. Mol. Cell 30, 415–425 (2008)

    Article  Google Scholar 

  25. Willis, S. N. & Adams, J. M. Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17, 617–625 (2005)

    Article  CAS  Google Scholar 

  26. Glimcher, L. H. et al. I region-restricted antigen presentation by B cell–B lymphoma hybridomas. Nature 298, 283–284 (1982)

    Article  ADS  CAS  Google Scholar 

  27. Lucas, B. & Germain, R. N. Opening a window on thymic positive selection: developmental changes in the influence of cosignaling by integrins and CD28 on selection events induced by TCR engagement. J. Immunol. 165, 1889–1895 (2000)

    Article  CAS  Google Scholar 

  28. Murphy, K. M., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990)

    Article  ADS  CAS  Google Scholar 

  29. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989)

    Article  ADS  CAS  Google Scholar 

  30. Grusby, M. J. et al. Mice lacking major histocompatibility complex class I and class II molecules. Proc. Natl Acad. Sci. USA 90, 3913–3917 (1993)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Davis for providing Bim phospho-Thr-112 specific antibody; R. Germain for providing DAP3 and P139 cell lines; M. Winslow and E. Gallo for critical reading of the manuscript and valuable comments. T.L.S. is a Fellow of the Leukemia and Lymphoma Society and V.L. was a Fellow of the Irvington Institute. Supported by the National Institutes of Health grant AI29673 (L.H.G.) and K99AR055668 (D.C.J.).

Author information

Authors and Affiliations

Authors

Contributions

T.L.S. designed the study and performed all experiments; V.L. and D.C.J. contributed to discussions and provided technical assistance; A.J.L. performed preliminary experiments; T.T. and S.I. provided reagents; T.L.S. and L.H.G. wrote the paper.

Corresponding author

Correspondence to Laurie H. Glimcher.

Ethics declarations

Competing interests

L.H.G. is a member of the Board of Directors of the Bristol-Myers Squibb Pharmaceutical Company.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-12 with legends. (PDF 2837 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staton, T., Lazarevic, V., Jones, D. et al. Dampening of death pathways by schnurri-2 is essential for T-cell development. Nature 472, 105–109 (2011). https://doi.org/10.1038/nature09848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09848

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing