Letter | Published:

Eocene global warming events driven by ventilation of oceanic dissolved organic carbon

Nature volume 471, pages 349352 (17 March 2011) | Download Citation

Abstract

‘Hyperthermals’ are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (65–34 million years (Myr) ago)1,2,3,4,5,6,7,8,9,10,11,12,13. The most extreme hyperthermal was the 170 thousand year (kyr) interval2 of 5–7 °C global warming3 during the Palaeocene–Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs1,3,6,11,14,15,16,17, and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon3,6,11,16,17. Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth’s orbit and have shorter durations (40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth’s readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was re-sequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM1,3. Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources3,6,11,16,17, but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611–1615 (2005)

  2. 2.

    , , & On the duration of the Paleocene-Eocene thermal maximum (PETM). Geochem. Geophys. Geosyst. 8, Q12002 (2007)

  3. 3.

    , & An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008)

  4. 4.

    , & in Warm Climates in Earth History (eds , & ) 132–160 (Cambridge Univ. Press, 2000)

  5. 5.

    , , & Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n-C25n). Paleoceanography 18 1097 10.1029/2003PA000909 (2003)

  6. 6.

    et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005)

  7. 7.

    An early late Paleocene event on Shatsky Rise, northwest Pacific Ocean (ODP Leg 198): evidence from planktonic foraminiferal assemblages. Proc. ODP Sci. Res. 198, 1–29 (2005)

  8. 8.

    , & Testing the Cenozoic multisite composite δ18O and δ13C curves: new monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography 21 PA2019 10.1029/2005PA001253 (2006)

  9. 9.

    et al. On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography 22 PA2201 10.1029/2006PA001322 (2007)

  10. 10.

    , , & No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature 448, 908–911 (2007)

  11. 11.

    , , & Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology 35, 699–702 (2007)

  12. 12.

    , , & Transient ocean warming and shifts in carbon reservoirs during the early Danian. Earth Planet. Sci. Lett. 265, 600–615 (2008)

  13. 13.

    et al. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology 38, 607–610 (2010)

  14. 14.

    , , & Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995)

  15. 15.

    Methane oxidation during the late Palaeocene thermal maximum. Bull. Soc. Geol. Fr. 171, 37–49 (2000)

  16. 16.

    Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet. Sci. Lett. 213, 169–183 (2003)

  17. 17.

    , & Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: a model-data comparison. Geology 36, 315–318 (2008)

  18. 18.

    Fate of fossil fuel CO2 in geologic time. J. Geophys. Res 110 C09S05 10.1029/2004JC002625 (2005)

  19. 19.

    , , & Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 4 (1). 1004 10.1029/2002GC000367 (2003)

  20. 20.

    , & Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21 PA2005 10.1029/2005PA001154 (2006)

  21. 21.

    , , , & Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010)

  22. 22.

    , & in Past and Future Changes of the Oceanic Meridional Overturning Circulation: Mechanisms and Impacts (eds , & ) 335–350 (AGU Geophysical Monograph 173, American Geophysical Union, 2007)

  23. 23.

    , , , & Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science 316, 1456–1459 (2007)

  24. 24.

    & Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395, 263–266 (1998)

  25. 25.

    , & Dissolved organic carbon and nitrogen in the western Black Sea. Mar. Chem. 105, 140–150 (2007)

  26. 26.

    , , , & Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18 1090 10.1029/2003PA000908 (2003)

  27. 27.

    , , & Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob. Biogeochem. Cycles 22 GB1013 10.1029/2007GB002953 (2008)

  28. 28.

    et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004)

  29. 29.

    & Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem. Cycles 16 (4). 1116 10.1029/2001GB001765 (2002)

  30. 30.

    & Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth Planet. Sci. Lett. 227, 185–199 (2004)

  31. 31.

    , & Oxygen and carbon isotopic fractionation of aragonitic and calcitic benthic foraminifera on Little Bahama Bank, Bahamas. Eos 74, 368 (1993)

  32. 32.

    & Paleocene-Eocene Bathyal and Abyssal Benthic Foraminifera from the Atlantic Ocean (Micropaleontol. Spec. Publ. Ser., Vol. 4, Micropaleontol. Proj., New York, 1983)

  33. 33.

    , & Cenozoic cosmopolitan deep water benthic foraminifera. Bull. Cent. Rech. Explor. Prod. Elf-Aquitaine 11, (Pau, France, 1986)

  34. 34.

    et al. Early Cenozoic benthic foraminiferal isotopes: species reliability and interspecies correction factors. Paleoceanography 18 1024 10.1029/2002PA000798 (2003)

  35. 35.

    , , & Reevaluation of the oxygen isotopic composition of planktonic foraminifera: experimental results and revised paleotemperature equations. Paleoceanography 13, 150–160 (1998)

  36. 36.

    , , , & Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

  37. 37.

    , & Global implications of lower to middle Eocene sequence boundaries on the New Jersey coastal plain: the icehouse cometh. Geology 24, 639–642 (1996)

  38. 38.

    Site 1258. Proc. ODP Init. Rep. 207. 1–117 10.2973/odp.proc.ir.207.105.2004 (2004)

  39. 39.

    & Campanian through Eocene magnetostratigraphy of Sites 1257–1261, ODP Leg 207, Demerara Rise (western equatorial Atlantic). Proc. ODP Sci. Res. 207. (2006) available at 〈〉.

  40. 40.

    & High resolution cyclostratigraphy of the early Eocene — new insights into the origin of the Cenozoic cooling trend. Clim. Past 5, 309–327 (2009)

  41. 41.

    et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

  42. 42.

    , & in Geochronology Time Scales and Global Stratigraphic Correlation (ed. ) 129–212 (Society for Sedimentary Geology, Tulsa, 1995)

  43. 43.

    , , & Eocene calibration of geomagnetic polarity time scale reevaluated: evidence from the Green River Formation of Wyoming. Geology 32, 137–140 (2004)

  44. 44.

    Site 1267. Proc. ODP Init. Rep. 208. 1–77 10.2973/odp.proc.ir.208.108.2004 (2004)

  45. 45.

    Site 1210. Proc. ODP Init. Rep. 198. 1–89 10.2973/odp.proc.ir.198.106.2002 (2002)

Download references

Acknowledgements

We thank M. Bolshaw for laboratory assistance and the shipboard party and crew of Ocean Drilling Program (ODP) Leg 207 for a successful drilling expedition. We thank H. Brinkhuis, G. Dickens, G. Foster, M. Huber, S. Kirtland, D. Kroon, L. Kump, E. Rohling and J. Zachos for discussions. This research used samples and data provided by the ODP. ODP (now IODP) is sponsored by the US NSF and participating countries under the management of JOI, Inc. We thank W. Hale and A. Wülbers (IODP) for assistance with sediment core sampling. Financial support for this research was provided by a European Commission Marie Curie Outgoing International Fellowship (P.F.S.), a Leverhulme Trust Fellowship (P.F.S.), a Natural Environment Research Council UK ODP grant (P.A.W. and P.F.S.), a Philip Leverhulme Prize (H.P.), the DFG-Leibniz Center for Surface Process and Climate Studies at the University of Potsdam, and the DFG (U.R. and T.W.).

Author information

Author notes

    • Philip F. Sexton
    •  & Clara T. Bolton

    Present addresses: Department of Earth and Environmental Sciences, The Open University, Milton Keynes MK7 6AA, UK (P.F.S.); Departamento de Geologia, Universidad de Oviedo, 33005 Oviedo, Spain (C.T.B.).

Affiliations

  1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA

    • Philip F. Sexton
    •  & Richard D. Norris
  2. National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH, UK

    • Philip F. Sexton
    • , Paul A. Wilson
    • , Heiko Pälike
    • , Clara T. Bolton
    •  & Samantha Gibbs
  3. MARUM — Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, 28359 Bremen, Germany

    • Thomas Westerhold
    •  & Ursula Röhl

Authors

  1. Search for Philip F. Sexton in:

  2. Search for Richard D. Norris in:

  3. Search for Paul A. Wilson in:

  4. Search for Heiko Pälike in:

  5. Search for Thomas Westerhold in:

  6. Search for Ursula Röhl in:

  7. Search for Clara T. Bolton in:

  8. Search for Samantha Gibbs in:

Contributions

P.F.S. and P.A.W. designed and instigated the research. P.F.S. and C.T.B. picked foraminifera. P.F.S. and P.A.W. generated stable isotope records. P.F.S. and H.P. generated the estimated CaCO3 content records and constructed age models. P.F.S. conducted stratigraphic correlations between the various drill sites. T.W. and U.R. modified the spliced sedimentary section at Demerara rise. S.G. generated biostratigraphic data for Demerara rise. P.F.S. and R.D.N. wrote the manuscript. P.A.W., H.P., T.W. and U.R. commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Philip F. Sexton.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    The file contains a Supplementary Discussion, Supplementary Figures 1-4 with legends, Supplementary Tables 1-3 and additional references.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature09826

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.