Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catecholamine receptor polymorphisms affect decision-making in C. elegans

Abstract

Innate behaviours are flexible: they change rapidly in response to transient environmental conditions, and are modified slowly by changes in the genome. A classical flexible behaviour is the exploration–exploitation decision, which describes the time at which foraging animals choose to abandon a depleting food supply. We have used quantitative genetic analysis to examine the decision to leave a food patch in Caenorhabditis elegans. Here we show that patch-leaving is a multigenic trait regulated in part by naturally occurring non-coding polymorphisms in tyra-3 (tyramine receptor 3), which encodes a G-protein-coupled catecholamine receptor related to vertebrate adrenergic receptors. tyra-3 acts in sensory neurons that detect environmental cues, suggesting that the internal catecholamines detected by tyra-3 regulate responses to external conditions. These results indicate that genetic variation and environmental cues converge on common circuits to regulate behaviour, and suggest that catecholamines have an ancient role in regulating behavioural decisions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Lawn-leaving behaviour varies between wild-type C. elegans strains.
Figure 2: N2 and HW tyra-3 alleles differentially affect leaving rates.
Figure 3: Non-coding changes in tyra-3 affect its activity and expression level.
Figure 4: tyra-3 acts in ASK and BAG sensory neurons.

References

  1. 1

    Flint, J. & Mackay, T. F. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19, 723–733 (2009)

    CAS  Article  Google Scholar 

  2. 2

    Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology (Univ. Chicago Press, 2007)

    Book  Google Scholar 

  3. 3

    Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976)

    CAS  Article  Google Scholar 

  4. 4

    March, J. G. Exploration and exploitation in organizational learning. Organ. Sci. 2, 71–87 (1991)

    ADS  Article  Google Scholar 

  5. 5

    Barrett, H. C. & Fiddick, L. Evolution and risky decisions. Trends Cogn. Sci. 4, 251–252 (2000)

    CAS  Article  Google Scholar 

  6. 6

    Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005)

    CAS  Article  Google Scholar 

  7. 7

    Harvey, S. C. Non-dauer larval dispersal in Caenorhabditis elegans . J. Exp. Zool. B 312, 224–230 (2009)

    Article  Google Scholar 

  8. 8

    Shtonda, B. B. & Avery, L. Dietary choice behavior in Caenorhabditis elegans . J. Exp. Biol. 209, 89–102 (2006)

    Article  Google Scholar 

  9. 9

    Pujol, N. et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans . Curr. Biol. 11, 809–821 (2001)

    CAS  Article  Google Scholar 

  10. 10

    Pradel, E. et al. Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 104, 2295–2300 (2007)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Lipton, J., Kleemann, G., Ghosh, R., Lints, R. & Emmons, S. W. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J. Neurosci. 24, 7427–7434 (2004)

    CAS  Article  Google Scholar 

  12. 12

    Gloria-Soria, A. & Azevedo, R. B. npr-1 Regulates foraging and dispersal strategies in Caenorhabditis elegans . Curr. Biol. 18, 1694–1699 (2008)

    CAS  Article  Google Scholar 

  13. 13

    Styer, K. L. et al. Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science 322, 460–464 (2008)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Reddy, K. C., Andersen, E. C., Kruglyak, L. & Kim, D. H. A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans . Science 323, 382–384 (2009)

    ADS  CAS  Article  Google Scholar 

  15. 15

    de Bono, M. & Bargmann, C. I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans . Cell 94, 679–689 (1998)

    CAS  Article  Google Scholar 

  16. 16

    Gray, J. M. et al. Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430, 317–322 (2004)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Rogers, C., Persson, A., Cheung, B. & de Bono, M. Behavioral motifs and neural pathways coordinating O2 responses and aggregation in C. elegans . Curr. Biol. 16, 649–659 (2006)

    CAS  Article  Google Scholar 

  18. 18

    Bretscher, A. J., Busch, K. E. & de Bono, M. A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 105, 8044–8049 (2008)

    ADS  CAS  Article  Google Scholar 

  19. 19

    McGrath, P. T. et al. Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron 61, 692–699 (2009)

    CAS  Article  Google Scholar 

  20. 20

    Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans . Nature 458, 1171–1175 (2009)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Osborne, K. A. et al. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila . Science 277, 834–836 (1997)

    CAS  Article  Google Scholar 

  22. 22

    Reaume, C. J. & Sokolowski, M. B. cGMP-dependent protein kinase as a modifier of behaviour. Handb. Exp. Pharmacol. 191, 423–443 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Hong, R. L., Witte, H. & Sommer, R. J. Natural variation in Pristionchus pacificus insect pheromone attraction involves the protein kinase EGL-4. Proc. Natl Acad. Sci. USA 105, 7779–7784 (2008)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Rockman, M. V. & Kruglyak, L. Recombinational landscape and population genomics of Caenorhabditis elegans . PLoS Genet. 5, e1000419 (2009)

    Article  Google Scholar 

  25. 25

    Steinmetz, L. M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Edwards, A. C. & Mackay, T. F. Quantitative trait loci for aggressive behavior in Drosophila melanogaster . Genetics 182, 889–897 (2009)

    Article  Google Scholar 

  27. 27

    Legare, M. E., Bartlett, F. S., II & Frankel, W. N. A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Thomson, M. J., Edwards, J. D., Septiningsih, E. M., Harrington, S. E. & McCouch, S. R. Substitution mapping of dth1. 1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172, 2501–2514 (2006)

    CAS  Article  Google Scholar 

  29. 29

    Wragg, R. T. et al. Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors. J. Neurosci. 27, 13402–13412 (2007)

    CAS  Article  Google Scholar 

  30. 30

    Mackay, T. F. Quantitative trait loci in Drosophila . Nature Rev. Genet. 2, 11–20 (2001)

    CAS  Article  Google Scholar 

  31. 31

    Bargmann, C. I. & Horvitz, H. R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans . Neuron 7, 729–742 (1991)

    CAS  Article  Google Scholar 

  32. 32

    Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 102, 3184–3191 (2005)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Wakabayashi, T., Kitagawa, I. & Shingai, R. Neurons regulating the duration of forward locomotion in Caenorhabditis elegans . Neurosci. Res. 50, 103–111 (2004)

    Article  Google Scholar 

  34. 34

    Hallem, E. A. & Sternberg, P. W. Acute carbon dioxide avoidance in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 105, 8038–8043 (2008)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Zimmer, M. et al. Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61, 865–879 (2009)

    CAS  Article  Google Scholar 

  36. 36

    Frøkjær-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans . Nature Genet. 40, 1375–1383 (2008)

    Article  Google Scholar 

  37. 37

    Suo, S., Kimura, Y. & Van Tol, H. H. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans . J. Neurosci. 26, 10082–10090 (2006)

    CAS  Article  Google Scholar 

  38. 38

    Alkema, M. J., Hunter-Ensor, M., Ringstad, N. & Horvitz, H. R. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46, 247–260 (2005)

    CAS  Article  Google Scholar 

  39. 39

    Greer, E. R., Perez, C. L., Van Gilst, M. R., Lee, B. H. & Ashrafi, K. Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab. 8, 118–131 (2008)

    CAS  Article  Google Scholar 

  40. 40

    Pirri, J. K., McPherson, A. D., Donnelly, J. L., Francis, M. M. & Alkema, M. J. A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron 62, 526–538 (2009)

    CAS  Article  Google Scholar 

  41. 41

    Crocker, A. & Sehgal, A. Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. J. Neurosci. 28, 9377–9385 (2008)

    CAS  Article  Google Scholar 

  42. 42

    Roeder, T. Tyramine and octopamine: ruling behavior and metabolism. Annu. Rev. Entomol. 50, 447–477 (2005)

    CAS  Article  Google Scholar 

  43. 43

    Hoyer, S. C. et al. Octopamine in male aggression of Drosophila . Curr. Biol. 18, 159–167 (2008)

    CAS  Article  Google Scholar 

  44. 44

    Yalcin, B. et al. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nature Genet. 36, 1197–1202 (2004)

    CAS  Article  Google Scholar 

  45. 45

    Young, L. J., Nilsen, R., Waymire, K. G., MacGregor, G. R. & Insel, T. R. Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400, 766–768 (1999)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Mackay, T. F., Stone, E. A. & Ayroles, J. F. The genetics of quantitative traits: challenges and prospects. Nature Rev. Genet. 10, 565–577 (2009)

    CAS  Article  Google Scholar 

  47. 47

    Gerke, J., Lorenz, K., Ramnarine, S. & Cohen, B. Gene-environment interactions at nucleotide resolution. PLoS Genet. 6, e1001144 (2010)

    Article  Google Scholar 

  48. 48

    Ramot, D., Johnson, B. E., Berry, T. L., Jr, Carnell, L. & Goodman, M. B. The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3, e2208 (2008)

    ADS  Article  Google Scholar 

  49. 49

    Broman, K. W., Wu, H., Sen, S. & Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889–890 (2003)

    CAS  Article  Google Scholar 

  50. 50

    Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995)

    CAS  Article  Google Scholar 

  51. 51

    Hobert, O. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans . Biotechnique 32, 728–730 (2002)

    CAS  Article  Google Scholar 

  52. 52

    Ahringer, J. Reverse genetics. In WormBook (ed. The C. elegans Research Community) doi:10.1895/wormbook.1.47.1 (6 April 2006); available at 〈http://www.wormbook.org〉.

  53. 53

    Troemel, E. R., Chou, J. H., Dwyer, N. D., Colbert, H. A. & Bargmann, C. I. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans . Cell 83, 207–218 (1995)

    CAS  Article  Google Scholar 

  54. 54

    Bargmann, C. I. & Avery, L. Laser killing of cells in Caenorhabditis elegans . Methods Cell Biol. 48, 225–250 (1995)

    CAS  Article  Google Scholar 

  55. 55

    Chelur, D. S. & Chalfie, M. Targeted cell killing by reconstituted caspases. Proc. Natl Acad. Sci. USA 104, 2283–2288 (2007)

    ADS  CAS  Article  Google Scholar 

  56. 56

    Kim, K. et al. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans . Science 326, 994–998 (2009)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Shingai for strains, and P. McGrath and members of the C.I.B. laboratory for discussions. A.B. was supported by the Secretaría de Educación Pública of Mexico and by The Rockefeller University. C.I.B. and L.K. are Investigators of the Howard Hughes Medical Institute. This work was supported by HHMI and by NIH grant GM089972.

Author information

Affiliations

Authors

Contributions

A.B. and C.I.B. designed experiments, A.B. conducted experiments, M.V.R. constructed strains for QTL mapping, M.T. developed tracking methods, A.B., M.V.R., L.K. and C.I.B. analysed and interpreted results, and A.B. and C.I.B. wrote the paper.

Corresponding author

Correspondence to Cornelia I. Bargmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-10 with legends, Supplementary Table 1, Supplementary Methods, Strain List and additional references. (PDF 6105 kb)

Supplementary Movie 1

This movie shows leaving assay showing six N2 adults, 20x actual speed. The border of the bacterial lawn is outlined for ease of visualization. Time stamp at upper left displays the actual time after placing the animals on the assay plate. (MOV 8791 kb)

Supplementary Movie 2

This movie shows leaving assay showing six HW adults, 20x actual speed. Four animals are on the lawn and two off the lawn at the beginning of the assay. The border of the bacterial lawn is outlined for ease of visualization. Time stamp at upper left displays the actual time after placing the animals on the assay plate. (MOV 8791 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bendesky, A., Tsunozaki, M., Rockman, M. et al. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472, 313–318 (2011). https://doi.org/10.1038/nature09821

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing