Abstract
The deep-water Avalon biota (about 579 to 565 million years old) is often regarded as the earliest-known fossil assemblage with macroscopic and morphologically complex life forms1. It has been proposed that the rise of the Avalon biota was triggered by the oxygenation of mid-Ediacaran deep oceans2. Here we report a diverse assemblage of morphologically differentiated benthic macrofossils that were preserved largely in situ as carbonaceous compressions in black shales of the Ediacaran Lantian Formation (southern Anhui Province, South China). The Lantian biota, probably older than and taxonomically distinct from the Avalon biota, suggests that morphological diversification of macroscopic eukaryotes may have occurred in the early Ediacaran Period, perhaps shortly after the Marinoan glaciation, and that the redox history of Ediacaran oceans was more complex than previously thought.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Oxygen suppression of macroscopic multicellularity
Nature Communications Open Access 14 May 2021
-
Organically-preserved multicellular eukaryote from the early Ediacaran Nyborg Formation, Arctic Norway
Scientific Reports Open Access 10 October 2019
-
Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life
Nature Communications Open Access 22 February 2019
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Narbonne, G. M. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu. Rev. Earth Planet. Sci. 33, 421–442 (2005)
Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Late Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315, 92–95 (2007)
Yan, Y., Jiang, C., Zhang, S., Du, S. & Bi, Z. Research of the Sinian System in the region of western Zhejiang, northern Jiangxi, and southern Anhui provinces. Bull. Nanjing Inst. Geol. Mineral Resources (Chin. Acad. Geol. Sci.) Supp. 12, 1–105 (1992)
Yuan, X., Li, J. & Cao, R. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia 32, 143–155 (1999)
Yuan, X., Xiao, S., Li, J., Yin, L. & Cao, R. Pyritized chuarids with excystment structures from the late Neoproterozoic Lantian Formation in Anhui, South China. Precambr. Res. 107, 253–263 (2001)
McFadden, K. A., Xiao, S., Zhou, C. & Kowalewski, M. Quantitative evaluation of the biostratigraphic distribution of acanthomorphic acritarchs in the Ediacaran Doushantuo Formation in the Yangtze Gorges area, South China. Precambr. Res. 173, 170–190 (2009)
Yuan, X. et al. Towering sponges in an Early Cambrian Lagerstätte: disparity between non-bilaterian and bilaterian epifaunal tiers during the Neoproterozoic-Cambrian transition. Geology 30, 363–366 (2002)
Zhou, C. et al. The Neoproterozoic tillites at Lantian, Xiuning County, Anhui Province. J. Stratigr. 25, 247–252 (2001)
Zhao, Y.-Y. & Zheng, Y.-F. Stable isotope evidence for involvement of deglacial meltwater in Ediacaran carbonates in South China. Chem. Geol. 271, 86–100 (2010)
Zhou, C. & Xiao, S. Ediacaran δ13C chemostratigraphy of South China. Chem. Geol. 237, 89–108 (2007)
McFadden, K. A. et al. Pulsed oxygenation and biological evolution in the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 105, 3197–3202 (2008)
Condon, D. et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005)
Liu, P., Yin, C., Gao, L., Tang, F. & Chen, S. New material of microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping area, Yichang, Hubei Province and its zircon SHRIMP U-Pb age. Chin. Sci. Bull. 54, 1058–1064 (2009)
Zhu, B., Becker, H., Jiang, S.-Y., Pi, D.-H. & Fischer-Gödde, M. Re-Os geochronology of black shales from the Doushantuo Formation, Yangtze Platform, South China. Geol. Soc. Am. Programs Abstr. 42, (5), 463 (2010)
Zhu, M., Zhang, J. & Yang, A. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254, 7–61 (2007)
Bold, H. C. & Wynne, M. J. Introduction to the Algae (Prentice-Hall, 1985)
Xiao, S., Yuan, X., Steiner, M. & Knoll, A. H. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: a systematic reassessment of the Miaohe biota, South China. J. Paleontol. 76, 347–376 (2002)
Sharma, M. & Shukla, Y. Taxonomy and affinity of Early Mesoproterozoic megascopic helically coiled and related fossils from the Rohtas Formation, the Vindhyan Supergroup, India. Precambr. Res. 173, 105–122 (2009)
Shen, B., Dong, L., Xiao, S. & Kowalewski, M. The Avalon explosion: evolution of Ediacara morphospace. Science 319, 81–84 (2008)
Boyle, R. A., Lenton, T. M. & Williams, H. T. P. Neoproterozoic ‘snowball Earth’ glaciations and the evolution of altruism. Geobiology 5, 337–349 (2007)
Catling, D. C., Glein, C. R., Zahnle, K. J. & McKay, C. P. Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5, 415–438 (2005)
Fenchel, T. & Finlay, B. J. Ecology and Evolution in Anoxic Worlds (Oxford University Press, 1995)
Izaguirre, I. et al. Algal assemblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Paraná River, South America). Hydrobiologia 511, 25–36 (2004)
Canfield, D. E. et al. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science 321, 949–952 (2008)
Shen, Y., Zhang, T. & Hoffman, P. F. On the co-evolution of Ediacaran oceans and animals. Proc. Natl Acad. Sci. USA 105, 7376–7381 (2008)
Li, C. et al. A stratified redox model for the Ediacaran ocean. Science 328, 80–83 (2010)
Röhl, H.-J., Schmid-Röhl, A., Oschmann, W., Frimmel, A. & Schwark, L. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 169, 273–299 (2001)
Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran ocean. Nature 444, 744–747 (2006)
Ries, J. B., Fike, D. A., Pratt, L. M., Lyons, T. W. & Grotzinger, J. P. Superheavy pyrite (δ34Spyr > δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: a consequence of low seawater sulfate at the dawn of animal life. Geology 37, 743–746 (2009)
Jiang, G., Kaufman, A. J., Christie-Blick, N., Zhang, S. & Wu, H. Carbon isotope variability across the Ediacaran Yangtze platform in South China: implications for a large surface-to-deep ocean δ13C gradient. Earth Planet. Sci. Lett. 261, 303–320 (2007)
Acknowledgements
This research was supported by the Chinese Academy of Sciences, the National Natural Science Foundation of China, the Chinese Ministry of Science and Technology, the National Science Foundation, the NASA Exobiology and Evolutionary Biology Program and the Guggenheim Foundation. We thank G. Jiang for useful discussions.
Author information
Authors and Affiliations
Contributions
X.Y. and Z.C. led field excavation. X.Y., S.X, Z.C. and C.Z. conducted research and developed the interpretation. S.X. and X.Y. prepared the manuscript with input from Z.C., C.Z. and H.H.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
The file contains Supplementary Text, Supplementary Figures 1-4 with legends, Supplementary Tables 1-2 and additional references. (PDF 827 kb)
Rights and permissions
About this article
Cite this article
Yuan, X., Chen, Z., Xiao, S. et al. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature 470, 390–393 (2011). https://doi.org/10.1038/nature09810
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature09810
This article is cited by
-
Oxygen suppression of macroscopic multicellularity
Nature Communications (2021)
-
Organically-preserved multicellular eukaryote from the early Ediacaran Nyborg Formation, Arctic Norway
Scientific Reports (2019)
-
Ediacaran biozones identified with network analysis provide evidence for pulsed extinctions of early complex life
Nature Communications (2019)
-
Integrated records of environmental change and evolution challenge the Cambrian Explosion
Nature Ecology & Evolution (2019)
-
Ediacaran integrative stratigraphy and timescale of China
Science China Earth Sciences (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.