Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Network anatomy and in vivo physiology of visual cortical neurons

Abstract

In the cerebral cortex, local circuits consist of tens of thousands of neurons, each of which makes thousands of synaptic connections. Perhaps the biggest impediment to understanding these networks is that we have no wiring diagrams of their interconnections. Even if we had a partial or complete wiring diagram, however, understanding the network would also require information about each neuron's function. Here we show that the relationship between structure and function can be studied in the cortex with a combination of in vivo physiology and network anatomy. We used two-photon calcium imaging to characterize a functional property—the preferred stimulus orientation—of a group of neurons in the mouse primary visual cortex. Large-scale electron microscopy of serial thin sections was then used to trace a portion of these neurons’ local network. Consistent with a prediction from recent physiological experiments, inhibitory interneurons received convergent anatomical input from nearby excitatory neurons with a broad range of preferred orientations, although weak biases could not be rejected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional characterization of neurons before anatomical reconstruction.
Figure 2: Large-scale EM.
Figure 3: Correspondence between in vivo fluorescence anatomy and EM.
Figure 4: Convergent synaptic input onto inhibitory interneurons.
Figure 5: From anatomy to connectivity graphs.
Figure 6: Convergent synaptic input onto inhibitory interneurons is predicted by proximity, not function.

Similar content being viewed by others

References

  1. Ramón y Cajal, S. Textura del Sistema Nervioso del Hombre y de los Vertebrados (Moya, 1904)

    Google Scholar 

  2. Binzegger, T., Douglas, R. J. & Martin, K. A. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24, 8441–8453 (2004)

    Article  CAS  Google Scholar 

  3. Stepanyants, A. et al. Local potential connectivity in cat primary visual cortex. Cereb. Cortex 18, 13–28 (2008)

    Article  Google Scholar 

  4. Mason, A., Nicoll, A. & Stratford, K. Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J. Neurosci. 11, 72–84 (1991)

    Article  CAS  Google Scholar 

  5. Markram, H., Lubke, J., Frotscher, M., Roth, A. & Sakmann, B. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. (Lond.) 500, 409–440 (1997)

    Article  CAS  Google Scholar 

  6. Thomson, A. M. & Bannister, A. P. Interlaminar connections in the neocortex. Cereb. Cortex 13, 5–14 (2003)

    Article  Google Scholar 

  7. Braitenberg, V. & Schüz, A. Cortex : Statistics and Geometry of Neuronal Connectivity 2nd edn (Springer, Berlin, 1998)

    Book  Google Scholar 

  8. Song, S., Sjostrom, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005)

    Article  Google Scholar 

  9. Yoshimura, Y. & Callaway, E. M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neurosci. 8, 1552–1559 (2005)

    Article  CAS  Google Scholar 

  10. Yoshimura, Y., Dantzker, J. L. & Callaway, E. M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Heuser, J. E. et al. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275–300 (1979)

    Article  CAS  Google Scholar 

  12. White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans . Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986)

    Article  ADS  CAS  Google Scholar 

  13. Sorra, K. E. & Harris, K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci. 18, 658–671 (1998)

    Article  CAS  Google Scholar 

  14. Dacheux, R. F. & Raviola, E. The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J. Neurosci. 6, 331–345 (1986)

    Article  CAS  Google Scholar 

  15. Sterling, P. Microcircuitry of the cat retina. Annu. Rev. Neurosci. 6, 149–185 (1983)

    Article  CAS  Google Scholar 

  16. Hamos, J. E., Van Horn, S. C., Raczkowski, D. & Sherman, S. M. Synaptic circuits involving an individual retinogeniculate axon in the cat. J. Comp. Neurol. 259, 165–192 (1987)

    Article  CAS  Google Scholar 

  17. Kisvárday, Z. F. et al. Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp. Brain Res. 64, 541–552 (1986)

    Article  Google Scholar 

  18. Anderson, J. C., Douglas, R. J., Martin, K. A. & Nelson, J. C. Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex. J. Comp. Neurol. 341, 25–38 (1994)

    Article  CAS  Google Scholar 

  19. Ahmed, B., Anderson, J. C., Martin, K. A. & Nelson, J. C. Map of the synapses onto layer 4 basket cells of the primary visual cortex of the cat. J. Comp. Neurol. 380, 230–242 (1997)

    Article  CAS  Google Scholar 

  20. Tamas, G., Somogyi, P. & Buhl, E. H. Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J. Neurosci. 18, 4255–4270 (1998)

    Article  CAS  Google Scholar 

  21. Shepherd, G. M. & Harris, K. M. Three-dimensional structure and composition of CA3→CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J. Neurosci. 18, 8300–8310 (1998)

    Article  CAS  Google Scholar 

  22. Mishchenko, Y. et al. Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron 67, 1009–1020 (2010)

    Article  CAS  Google Scholar 

  23. Anderson, J. R. et al. A computational framework for ultrastructural mapping of neural circuitry. PLoS Biol. 7, e1000074 (2009)

    Article  Google Scholar 

  24. Sohya, K., Kameyama, K., Yanagawa, Y., Obata, K. & Tsumoto, T. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J. Neurosci. 27, 2145–2149 (2007)

    Article  CAS  Google Scholar 

  25. Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008)

    Article  CAS  Google Scholar 

  26. Liu, B. H. et al. Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. J. Neurosci. 29, 10520–10532 (2009)

    Article  CAS  Google Scholar 

  27. Kerlin, A. M., Andermann, M. L., Berezovskii, V. K. & Reid, R. C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010)

    Article  CAS  Google Scholar 

  28. Runyan, C. A. et al. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron 67, 847–857 (2010)

    Article  CAS  Google Scholar 

  29. Ma, W. P. et al. Visual representations by cortical somatostatin inhibitory neurons — selective but with weak and delayed responses. J. Neurosci. 30, 14371–14379 (2010)

    Article  CAS  Google Scholar 

  30. Ohki, K., Chung, S., Ch'ng, Y. H., Kara, P. & Reid, R. C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005)

    Article  ADS  CAS  Google Scholar 

  31. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    Article  ADS  CAS  Google Scholar 

  32. Harris, K. M. et al. Uniform serial sectioning for transmission electron microscopy. J. Neurosci. 26, 12101–12103 (2006)

    Article  CAS  Google Scholar 

  33. Peters, A., Palay, S. L. & Webster, H. D. The Fine Structure of the Nervous System : Neurons and Their Supporting Cells 3rd edn (Oxford Univ. Press, 1991)

    Google Scholar 

  34. Alitto, H. J. & Dan, Y. Function of inhibition in visual cortical processing. Curr. Opin. Neurobiol. 20, 340–346 (2010)

    Article  CAS  Google Scholar 

  35. Liu, B. H. et al. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nature Neurosci. 13, 89–96 (2010)

    Article  CAS  Google Scholar 

  36. Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009)

    Article  CAS  Google Scholar 

  37. Helmstaedter, M., Briggman, K. L. & Denk, W. 3D structural imaging of the brain with photons and electrons. Curr. Opin. Neurobiol. 18, 633–641 (2008)

    Article  CAS  Google Scholar 

  38. Turaga, S. C. et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511–538 (2010)

    Article  Google Scholar 

  39. Peters, A. & Kara, D. A. The neuronal composition of area 17 of rat visual cortex. II. The nonpyramidal cells. J. Comp. Neurol. 234, 242–263 (1985)

    Article  CAS  Google Scholar 

  40. White, E. L. & Keller, A. Cortical Circuits: Synaptic Organization of the Cerebral Cortex — Structure, Function and Theory (Birkhauser, 1989)

    Book  Google Scholar 

  41. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004)

    Article  CAS  Google Scholar 

  42. McGuire, B. A., Gilbert, C. D., Rivlin, P. K. & Wiesel, T. N. Targets of horizontal connections in macaque primary visual cortex. J. Comp. Neurol. 305, 370–392 (1991)

    Article  CAS  Google Scholar 

  43. Holmgren, C., Harkany, T., Svennenfors, B. & Zilberter, Y. Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J. Physiol. (Lond.) 551, 139–153 (2003)

    Article  CAS  Google Scholar 

  44. Thomson, A. M., West, D. C., Wang, Y. & Bannister, A. P. Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro . Cereb. Cortex 12, 936–953 (2002)

    Article  Google Scholar 

  45. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004)

    Article  Google Scholar 

  46. Hayworth, K., Kasthuri, N., Schalek, R. & Lichtman, J. Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc. Microanal. 12, 86–87 (2006)

    Article  ADS  Google Scholar 

  47. Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010)

    Article  ADS  CAS  Google Scholar 

  48. Ohki, K. & Reid, R. C. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17, 401–407 (2007)

    Article  CAS  Google Scholar 

  49. Grewe, B. F. & Helmchen, F. Optical probing of neuronal ensemble activity. Curr. Opin. Neurobiol. 19, 520–529 (2009)

    Article  CAS  Google Scholar 

  50. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods 6, 875–881 (2009)

    Article  CAS  Google Scholar 

  51. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000)

    Article  CAS  Google Scholar 

  52. Peltier, S. et al. Design of a new 8k x 8k lens coupled detector for wide-field, high-resolution transmission electron microscopy. Microsc. Microanal. 11, 610–611 (2005)

    Article  Google Scholar 

  53. Martone, M. E. et al. A cell-centered database for electron tomographic data. J. Struct. Biol. 138, 145–155 (2002)

    Article  ADS  CAS  Google Scholar 

  54. Cardona, A. et al. An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol. 8, e1000502 (2010)

    Article  Google Scholar 

  55. Fiala, J. C. & Harris, K. M. Cylindrical diameters method for calibrating section thickness in serial electron microscopy. J. Microsc. 202, 468–472 (2001)

    Article  MathSciNet  CAS  Google Scholar 

  56. Ringach, D. L., Shapley, R. M. & Hawken, M. J. Orientation selectivity in macaque V1: diversity and laminar dependence. J. Neurosci. 22, 5639–5651 (2002)

    Article  CAS  Google Scholar 

  57. Worgotter, F. & Eysel, U. T. Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli. Biol. Cybern. 57, 349–355 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Raviola for discussions and technical advice on all aspects of EM; J. Stiles for support and advice concerning the alignment and stitching effort at The Pittsburgh Supercomputing Center; J. Lichtman for discussions and, along with K. Blum and J. Sanes, support from the Center for Brain Science; A. Cardona for help with TrakeEM2, and many modifications of it; and H. Pfister and S. Warfield for discussions and help with computational issues. We also thank S. Butterfield for programming, and L. Benecchi and Harvard Medical School EM Core Facility for technical support. For technical help with EM and its interpretation, we thank K. Harris, M. Bickford, M. Ellisman, K. Martin and T. Reese. We thank J. Assad, R. Born, J. Maunsell, J. Stiles, E. Raviola, and members of the Reid laboratory for critical reading of the manuscript. This work was supported by the Center for Brain Science at Harvard University, Microsoft Research, and the NIH though the NEI to R.C.R. (EY10115 and EY18742) and through resources provided by the NRBSC (P41 RR06009), which is part of The Pittsburgh Supercomputing Center; and by fellowships from Harvard Center of Neurodegeneration and Repair to D.D.B. and the NEI to W.-C.A.L. (EY18532).

Author information

Authors and Affiliations

Authors

Contributions

D.D.B., E.R.S., S.Y. and R.C.R. designed and built the TEMCA system, and D.D.B. programmed it. A.M.K. and M.L.A. performed the in vivo imaging and A.M.K. analysed it. D.D.B. processed the tissue, and D.D.B. and W.-C.A.L. aligned the block with the in vivo imaging. W.-C.A.L. sectioned the series, and D.D.B., W.-C.A.L. and H.S.K. imaged it on the TEMCA. G.H. and A.W.W. stitched and aligned the images into a volume. D.D.B., W.-C.A.L. and H.S.K. did most of the segmentation. D.D.B., W.-C.A.L. and S.Y. performed quantitative analysis on the tracing. D.D.B., W.-C.A.L. and R.C.R. designed the experiment and wrote the paper, with considerable help from the other authors.

Corresponding author

Correspondence to R. Clay Reid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-8 with legends. (PDF 5227 kb)

Supplementary Movie 1

The movie shows section-by-section fly-through of the aligned EM series. Please see Methods for directions to the publicly accessible high-resolution aligned dataset. (MOV 31197 kb)

Supplementary Movie 2

The movie shows section-by-section fly-through of a cropped (8.2 x 8.2 µm) region traversing a sixth of the aligned EM sections at the level of the functionally imaged plane. With global 3-D alignment of the EM data set, many of the finest processes in the neuropil (e.g. dendritic spines and fine axons) can be unambiguously followed for tens to hundreds of micrometres. (MOV 30789 kb)

Supplementary Movie 3

The movie shows fifty serial sections in the aligned EM series rotating as a false-colour volumetric rendering. (MOV 28396 kb)

Supplementary Movie 4

The movie shows zoomed-in view of a region through fifty serial sections rotating as a false-colour volumetric rendering. (MOV 10585 kb)

Supplementary Movie 5

The movie shows rotating 3-D renderings of the skeletonized arbors and cell bodies of the functionally characterized cells, their postsynaptic targets, and their convergence targets. (MOV 29429 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, D., Lee, WC., Kerlin, A. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011). https://doi.org/10.1038/nature09802

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing