Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A decade’s perspective on DNA sequencing technology

Abstract

The decade since the Human Genome Project ended has witnessed a remarkable sequencing technology explosion that has permitted a multitude of questions about the genome to be asked and answered, at unprecedented speed and resolution. Here I present examples of how the resulting information has both enhanced our knowledge and expanded the impact of the genome on biomedical research. New sequencing technologies have also introduced exciting new areas of biological endeavour. The continuing upward trajectory of sequencing technology development is enabling clinical applications that are aimed at improving medical diagnosis and treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Changes in instrument capacity over the past decade, and the timing of major sequencing projects.

References

  1. 1

    Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)

    Article  Google Scholar 

  3. 3

    Gibbs, R. A. et al. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004)

    ADS  CAS  Article  Google Scholar 

  4. 4

    International Chicken Genome Sequencing Consortium Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716 (2004)

    Article  Google Scholar 

  5. 5

    Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    The Chimpanzee Sequencing and Analysis Consortium Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005)

    Article  Google Scholar 

  7. 7

    Gibbs, R. A. et al. Evolutionary and biomedical insights from the rhesus macaque genome. Science 316, 222–234 (2007)

    CAS  Article  Google Scholar 

  8. 8

    Warren, W. C. et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183 (2008)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Elsik, C. G. et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522–528 (2009)

    ADS  Article  Google Scholar 

  10. 10

    Mardis, E. R. New strategies and emerging technologies for massively parallel sequencing: applications in medical research. Genome Med 1, 40 (2009)

    Article  Google Scholar 

  11. 11

    Metzker, M. L. Sequencing technologies - the next generation. Nature Rev. Genet. 11, 31–46 (2010)

    CAS  Article  Google Scholar 

  12. 12

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)

    ADS  CAS  Article  Google Scholar 

  13. 13

    International Human Genome Sequencing Consortium Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)

    ADS  Article  Google Scholar 

  14. 14

    The International HapMap Consortium The International HapMap Project. Nature 426, 789–796 (2003)

    Article  Google Scholar 

  15. 15

    The International HapMap Consortium A haplotype map of the human genome. Nature 437, 1299–1320 (2005)

    ADS  Article  Google Scholar 

  16. 16

    Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Altshuler, D. M. et al. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Lander, E. S. Initial impact of the sequencing of the human genome. Nature doi:10.1038/nature09792 (this issue).

  19. 19

    Harismendy, O. et al. Population sequencing of two endocannabinoid metabolic genes identifies rare and common regulatory variants associated with extreme obesity and metabolite level. Genome Biol. 11, R118 (2010)First demonstration that rare sequence variants could be identified using next-generation sequencing in well-phenotyped cases and controls, and that functional significance in the phenotype could be assigned to the suspect variants.

    CAS  Article  Google Scholar 

  20. 20

    Kidd, J. M. et al. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56–64 (2008)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Tuzun, E. et al. Fine-scale structural variation of the human genome. Nature Genet. 37, 727–732 (2005)

    CAS  Article  Google Scholar 

  22. 22

    Redon, R. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010)

    CAS  Article  Google Scholar 

  24. 24

    Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Chen, K. et al. BreakDancer: an algorithm for high resolution mapping of genomic structural variation. Nature Methods 6, 677–681 (2009)

    CAS  Article  Google Scholar 

  26. 26

    Alkan, C. et al. Personalized copy number and segmental duplication maps using next-generation sequencing. Nature Genet. 41, 1061–1067 (2009)

    CAS  Article  Google Scholar 

  27. 27

    Sudmant, P. H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641–646 (2010)Initial structural variation data analysis resulting from 1,000 Genomes Project data, demonstrating the yield of such information from a large-scale project using next-generation sequencing.

    ADS  CAS  Article  Google Scholar 

  28. 28

    Durbin, R. M. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006)

    ADS  Article  Google Scholar 

  31. 31

    Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Ley, T. J. et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66–72 (2008)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Mardis, E. R. Cancer genomics identifies determinants of tumor biology. Genome Biol. 11, 211 (2010)

    Article  Google Scholar 

  34. 34

    Mardis, E. R. The $1,000 genome, the $100,000 analysis? Genome Med 2, 84 (2010)

    Article  Google Scholar 

  35. 35

    Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Green, E. D., Guyer, M. S. & National Human Genome Research Institute Charting a course for genomic medicine from base pairs to bedside. Nature doi:10.1038/nature09764 (this issue).

  37. 37

    Nelson, K. E. et al. A catalog of reference genomes from the human microbiome. Science 328, 994–999 (2010)

    CAS  Article  Google Scholar 

  38. 38

    Loh, J. et al. Detection of novel sequences related to African Swine Fever virus in human serum and sewage. J. Virol. 83, 13019–13025 (2009)

    CAS  Article  Google Scholar 

  39. 39

    Presti, R. M. et al. Quaranfil, Johnston Atoll, and Lake Chad viruses are novel members of the family Orthomyxoviridae. J. Virol. 83, 11599–11606 (2009)

    CAS  Article  Google Scholar 

  40. 40

    Finkbeiner, S. R. et al. Identification of a novel astrovirus (astrovirus VA1) associated with an outbreak of acute gastroenteritis. J. Virol. 83, 10836–10839 (2009)

    CAS  Article  Google Scholar 

  41. 41

    Wheeler, D. A. et al. The complete genome of an individual by massively parallel DNA sequencing. Nature 452, 872–876 (2008)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Lupski, J. R. et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N. Engl. J. Med. 362, 1181–1191 (2010)Personal genome sequencing used to identify a rare allelic variant that causes Charcot-Marie-Tooth syndrome in the family of J. R. Lupski.

    CAS  Article  Google Scholar 

  43. 43

    Roach, J. C. et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328, 636–639 (2010)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Jones, S. J. et al. Evolution of an adenocarcinoma in response to selection by targeted kinase inhibitors. Genome Biol. 11, R82 (2010)

    Article  Google Scholar 

  45. 45

    Ng, S. B. et al. Exome sequencing identifies the cause of a mendelian disorder. Nature Genet. 42, 30–35 (2010)

    CAS  Article  Google Scholar 

  46. 46

    Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genet. 42, 790–793 (2010)One of the first demonstrations of using exome sequencing to identify a major causative mutation in Kabuki syndrome, using genomic DNA from a small number of unrelated affected individuals.

    CAS  Article  Google Scholar 

  47. 47

    Gilissen, C. et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am. J. Hum. Genet. 87, 418–423 (2010)

    CAS  Article  Google Scholar 

  48. 48

    Chin, C. S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2011)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

I thank R. Wilson, D. Dooling and G. Weinstock for critical reading of the manuscript. J. McMichael was integral to the creation of Fig. 1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elaine R. Mardis.

Ethics declarations

Competing interests

I serve on the Scientific Advisory Board of Pacific Biosciences, Inc., and as part of my compensation for this service, I have stock options that have been granted to me. I am a former member of the Board of Directors of Applied Biosystems, which merged with Life Technologies in 2009. As part of my retirement from the Board membership, I received stock and stock options.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mardis, E. A decade’s perspective on DNA sequencing technology. Nature 470, 198–203 (2011). https://doi.org/10.1038/nature09796

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing