Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pervasive roles of microRNAs in cardiovascular biology

Abstract

First recognized as regulators of development in worms and fruitflies, microRNAs are emerging as pivotal modulators of mammalian cardiovascular development and disease. Individual microRNAs modulate the expression of collections of messenger RNA targets that often have related functions, thereby governing complex biological processes. The wideranging functions of microRNAs in the cardiovascular system have provided new perspectives on disease mechanisms and have revealed intriguing therapeutic targets, as well as diagnostics, for a variety of cardiovascular disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concepts of miRNA function.
Figure 2: Oligonucleotide manipulation of miRNA function.
Figure 3: Functional role of miRNAs in the normal and diseased heart.
Figure 4: Functional role of miRNAs in the vascular system.

References

  1. Hill, J. A. & Olson, E. N. Cardiac plasticity. N. Engl. J. Med. 358, 1370–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman, J. I. & Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002).

    PubMed  Google Scholar 

  3. Bruneau, B. G. The developmental genetics of congenital heart disease. Nature 451, 943–948 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Cordes, K. R. & Srivastava, D. MicroRNA regulation of cardiovascular development. Circ. Res. 104, 724–732 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Latronico, M. V. & Condorelli, G. MicroRNAs and cardiac pathology. Nature Rev. Cardiol. 6, 419–429 (2009).

    Article  CAS  Google Scholar 

  6. Small, E. M., Frost, R. J. & Olson, E. N. MicroRNAs add a new dimension to cardiovascular disease. Circulation 121, 1022–1032 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. van Rooij, E. & Olson, E. N. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J. Clin. Invest. 117, 2369–2376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, N. & Olson, E. N. MicroRNA regulatory networks in cardiovascular development. Dev. Cell 18, 510–525 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ikeda, S. et al. Altered microRNA expression in human heart disease. Physiol. Genomics 31, 367–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. van Rooij, E. et al. A signature pattern of stress–responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA 103, 18255–18260 (2006). This important paper describes the dynamic regulation of miRNA expression during cardiac stress.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matkovich, S. J. et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 119, 1263–1271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thum, T. et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116, 258–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Roy, S. et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82, 21–29 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Rooij, E. et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA 105, 13027–13032 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji, R. et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ. Res. 100, 1579–1588 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Xin, M. et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 23, 2166–2178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, Z. P., Neppl, R. L. & Wang, D. Z. MicroRNAs in cardiac remodeling and disease. J. Cardiovasc. Transl. Res. 3, 212–218 (2010).

    Article  PubMed  Google Scholar 

  18. van Rooij, E., Marshall, W. S. & Olson, E. N. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res. 103, 919–928 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Lutter, D., Marr, C., Krumsiek, J., Lang, E. W. & Theis, F. J. Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics 11, 224 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cao, G. et al. Intronic miR-301 feedback regulates its host gene, ska2, in A549 cells by targeting MEOX2 to affect ERK/CREB pathways. Biochem. Biophys. Res. Commun. 396, 978–982 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Najafi-Shoushtari, S. H. et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328, 1566–1569 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Poliseno, L. et al. Identification of the miR-106b25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci. Signal. 3, ra29 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Barik, S. An intronic microRNA silences genes that are functionally antagonistic to its host gene. Nucleic Acids Res. 36, 5232–5241 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alvarez-Saavedra, E. & Horvitz, H. R. Many families of C. elegans microRNAs are not essential for development or viability. Curr. Biol. 20, 367–373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ambros, V. MicroRNAs: genetically sensitized worms reveal new secrets. Curr. Biol. 20, R598–R600 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Brenner, J. L., Jasiewicz, K. L., Fahley, A. F., Kemp, B. J. & Abbott, A. L. Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans . Curr. Biol. 20, 1321–1325 (2010). This paper suggests redundant and stress-responsive roles of miRNAs, through using miRNA mutants in Dicer -deficient C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007). This paper demonstrates an important role for an miRNA in heart development by genetic deletion in mice.

    Article  CAS  PubMed  Google Scholar 

  31. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 . Nature Med. 13, 486–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Luo, X. et al. Down-regulation of miR-1/miR-133 contributes to re-expression of pacemaker channel genes HCN2 and HCN4 in hypertrophic heart. J. Biol. Chem. 283, 20045–20052 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Small, E. M. et al. Regulation of PI3-kinase/Akt signalling by muscle-enriched microRNA-486. Proc. Natl Acad. Sci. USA 107, 4218–4223 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A. & Kosik, K. S. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137, 647–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Choi, W. Y., Giraldez, A. J. & Schier, A. F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318, 271–274 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Xiao, J. et al. Novel approaches for gene-specific interference via manipulating actions of microRNAs: examination on the pacemaker channel genes HCN2 and HCN4 . J. Cell. Physiol. 212, 285–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Brown, B. D. & Naldini, L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nature Rev. Genet. 10, 578–585 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, J. F. et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA 105, 2111–2116 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Albinsson, S. et al. MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler. Thromb. Vasc. Biol. 30, 1118–1126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rao, P. K. et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105, 585–594 (2009). Deep sequencing showed that the 18 most abundant cardiac miRNAs account for more than 90% of all miRNAs in the heart.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brown, B. D. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nature Biotechnol. 25, 1457–1467 (2007).

    Article  CAS  Google Scholar 

  43. Liu, N. et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl Acad. Sci. USA 104, 20844–20849 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Ivey, K. N. et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219–229 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, N. et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22, 3242–3254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Deacon, D. C. et al. The miR-143–adducin3 pathway is essential for cardiac chamber morphogenesis. Development 137, 1887–1896 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Morton, S. U. et al. microRNA-138 modulates cardiac patterning during embryonic development. Proc. Natl Acad. Sci. USA 105, 17830–17835 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmidt, M. et al. EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. Development 134, 2913–2923 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Nicoli, S. et al. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 464, 1196–1200 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuhnert, F. et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126 . Development 135, 3989–3993 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fish, J. E. et al. miR-126 regulates angiogenic signalling and vascular integrity. Dev. Cell 15, 272–284 (2008). References 52 and 53 show a crucial role for miR-126 in angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Small, E. M., Sutherland, L. B., Rajagopalan, R., Wang, S. & Olson, E. N. MicroRNA-218 regulates vascular patterning by modulation of Slit–Robo signaling. Circ. Res. 107, 1336–1344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cordes, K. R. et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705–710 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. Elia, L. et al. The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: correlates with human disease. Cell Death Differ. 16, 1590–1598 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Boettger, T. et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 119, 2634–2647 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao, G., Yu, D. & Weiss, M. J. MicroRNAs in erythropoiesis. Curr. Opin. Hematol. 17, 155–162 (2010).

    CAS  PubMed  Google Scholar 

  59. Georgantas, R. W. III et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc. Natl Acad. Sci. USA 104, 2750–2755 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. O'Carroll, D. et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21, 1999–2004 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lu, J. et al. MicroRNA-mediated control of cell fate in megakaryocyte–erythrocyte progenitors. Dev. Cell 14, 843–853 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, Q. et al. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111, 588–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Rasmussen, K. D. et al. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 207, 1351–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Johnnidis, J. B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Patrick, D. M. et al. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ. Genes Dev. 24, 1614–1619 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu, D. et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3ζ. Genes Dev. 24, 1620–1633 (2010). References 65 and 66 show that miR-451 is required for proper erythroid differentiation, and suggest a potential therapeutic application for targeting miR-451 for degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Callis, T. E. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008). This paper demonstrates an important role for miR-21 in cardiac remodelling using antagomir-mediated knockdown in mice.

    Article  ADS  CAS  PubMed  Google Scholar 

  69. van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007). The first paper to show a role for an miRNA, miR-208a, in the control of cardiac remodelling, using a genetic knockout.

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 13, 613–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. van Rooij, E. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 17, 662–673 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Molkentin, J. D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin, Z. et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl Acad. Sci. USA 106, 12103–12108 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rane, S. et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 104, 879–886 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patrick, D. M. et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest. 120, 3912–3916 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fleissner, F. et al. Asymmetric dimethylarginine impairs angiogenic progenitor cell function in patients with coronary artery disease through a microRNA-21-dependent mechanism. Circ. Res. 107, 138–143 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Bonauer, A. et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. van Solingen, C. et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J. Cell. Mol. Med. 13, 1577–1585 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Zernecke, A. et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2, ra81 (2009).

    Article  PubMed  Google Scholar 

  80. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T. & Lowenstein, C. J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl Acad. Sci. USA 105, 1516–1521 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cheng, Y. et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ. Res. 105, 158–166 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saunders, M. A., Liang, H. & Li, W. H. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl Acad. Sci. USA 104, 3300–3305 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, K. & Rajewsky, N. Natural selection on human microRNA binding sites inferred from SNP data. Nature Genet. 38, 1452–1456 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet. 38, 813–818 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Sethupathy, P. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet. 81, 405–413 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Schipper, M. E., van Kuik, J., de Jonge, N., Dullens, H. F. & de Weger, R. A. Changes in regulatory microRNA expression in myocardium of heart failure patients on left ventricular assist device support. J. Heart Lung Transplant. 27, 1282–1285 (2008).

    Article  PubMed  Google Scholar 

  87. Voellenkle, C. et al. MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol. Genomics 42, 420–426 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Fichtlscherer, S. et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107, 677–684 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Ji, X. et al. Plasma miR-208 as a biomarker of myocardial injury. Clin. Chem. 55, 1944–1949 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327, 198–201 (2010). The first report of therapeutically targeting an miRNA for the treatment of a disease in non-human primates.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all colleagues whose work could not be cited owing to space restrictions. We thank J. Cabrera for artwork and J. Brown for editorial assistance. E.N.O. was supported by grants from the National Institutes of Health, the Donald W. Reynolds Center for Clinical Cardiovascular Research, the Robert A. Welch Foundation, the Fondation Leducq's Transatlantic Network for Excellence in Cardiovascular Research Program, the American Heart Association and the Jon Holden DeHaan Foundation. E.M.S. was supported by a scientist development grant from the American Heart Association.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

E.N.O. holds equity in miRagen Therapeutics, which is developing miRNA-based therapies for muscle disease.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, E., Olson, E. Pervasive roles of microRNAs in cardiovascular biology. Nature 469, 336–342 (2011). https://doi.org/10.1038/nature09783

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09783

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing