Abstract
Quantum metrology aims to use entanglement and other quantum resources to improve precision measurement1. An interferometer using N independent particles to measure a parameter can achieve at best the standard quantum limit of sensitivity, δ ∝ N−1/2. However, using N entangled particles and exotic states2, such an interferometer3 can in principle achieve the Heisenberg limit, δ ∝ N−1. Recent theoretical work4,5,6 has argued that interactions among particles may be a valuable resource for quantum metrology, allowing scaling beyond the Heisenberg limit. Specifically, a k-particle interaction will produce sensitivity δ ∝ N−k with appropriate entangled states and δ ∝ N−(k−1/2) even without entanglement7. Here we demonstrate ‘super-Heisenberg’ scaling of δ ∝ N−3/2 in a nonlinear, non-destructive8,9 measurement of the magnetization10,11 of an atomic ensemble12. We use fast optical nonlinearities to generate a pairwise photon–photon interaction13 (corresponding to k = 2) while preserving quantum-noise-limited performance7,14. We observe super-Heisenberg scaling over two orders of magnitude in N, limited at large numbers by higher-order nonlinear effects, in good agreement with theory13. For a measurement of limited duration, super-Heisenberg scaling allows the nonlinear measurement to overtake in sensitivity a comparable linear measurement with the same number of photons. In other situations, however, higher-order nonlinearities prevent this crossover from occurring, reflecting the subtle relationship between scaling and sensitivity in nonlinear systems. Our work shows that interparticle interactions can improve sensitivity in a quantum-limited measurement, and experimentally demonstrates a new resource for quantum metrology.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)
Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004)
Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002)
Boixo, S., Flammia, S. T., Caves, C. M. & Geremia, J. Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007)
Choi, S. & Sundaram, B. Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit. Phys. Rev. A 77, 053613 (2008)
Roy, S. M. & Braunstein, S. L. Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100, 220501 (2008)
Boixo, S. et al. Quantum metrology: dynamics versus entanglement. Phys. Rev. Lett. 101, 040403 (2008)
Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010)
Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Quantum nondemolition measurement of large-spin ensembles by dynamical decoupling. Phys. Rev. Lett. 105, 093602 (2010)
Kominis, I., Kornack, T., Allred, J. & Romalis, M. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003)
Budker, D. & Romalis, M. Optical magnetometry. Nature Phys. 3, 227–234 (2007)
Hammerer, K., Sørensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82, 1041–1093 (2010)
Napolitano, M. & Mitchell, M. W. Nonlinear metrology with a quantum interface. N. J. Phys. 12, 093016 (2010)
Fleischhauer, M., Matsko, A. B. & Scully, M. O. Quantum limit of optical magnetometry in the presence of ac Stark shifts. Phys. Rev. A 62, 013808 (2000)
Scully, M. O., Englert, B. G. & Walther, H. Quantum optical tests of complementarity. Nature 351, 111–116 (1991)
Wasilewski, W. et al. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett. 104, 133601 (2010)
Wolfgramm, F. et al. Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010)
Beltrán, J. & Luis, A. Breaking the Heisenberg limit with inefficient detectors. Phys. Rev. A 72, 045801 (2005)
Woolley, M. J., Milburn, G. J. & Caves, C. M. Nonlinear quantum metrology using coupled nanomechanical resonators. N. J. Phys. 10, 125018 (2008)
Chase, B. A., Baragiola, B. Q., Partner, H. L., Black, B. D. & Geremia, J. M. Magnetometry via a double-pass continuous quantum measurement of atomic spin. Phys. Rev. A 79, 062107 (2009)
Negretti, A., Henkel, C. & Mølmer, K. Quantum-limited position measurements of a dark matter-wave soliton. Phys. Rev. A 77, 043606 (2008)
Boixo, S. et al. Quantum-limited metrology and Bose-Einstein condensates. Phys. Rev. A 80, 032103 (2009)
Kubasik, M. et al. Polarization-based light-atom quantum interface with an all-optical trap. Phys. Rev. A 79, 043815 (2009)
Braginskii, V. B. & Vorontsov, Y. I. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique. Sov. Phys. Usp. 17, 644 (1975)
Acknowledgements
We thank I. H. Deutsch and F. Illuminati for comments. We thank C. M. Caves and A. D. Codorníu for inspiration. This work was supported by the Spanish Ministry of Science and Innovation through the Consolider-Ingenio 2010 project QOIT, the Ingenio-Explora project OCHO (ref. FIS2009-07676-E/FIS) and project ILUMA (ref. FIS2008-01051), by the Marie-Curie RTN EMALI, and by Fundacio CELLEX Barcelona.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the work presented in this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
The file contains a Supplementary Discussion and Data, Supplementary Figures 1-4 with legends and additional references. (PDF 378 kb)
Rights and permissions
About this article
Cite this article
Napolitano, M., Koschorreck, M., Dubost, B. et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011). https://doi.org/10.1038/nature09778
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature09778
This article is cited by
-
Speed limit of quantum metrology
Scientific Reports (2023)
-
Experimental super-Heisenberg quantum metrology with indefinite gate order
Nature Physics (2023)
-
Achieving nanoscale precision using neuromorphic localization microscopy
Nature Nanotechnology (2023)
-
Multi-channel quantum parameter estimation
Science China Information Sciences (2022)
-
Hybrid quantum-classical approach to enhanced quantum metrology
Scientific Reports (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.