Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A tension-induced mechanotransduction pathway promotes epithelial morphogenesis

Abstract

Mechanotransduction refers to the transformation of physical forces into chemical signals. It generally involves stretch-sensitive channels or conformational change of cytoskeleton-associated proteins1. Mechanotransduction is crucial for the physiology of several organs and for cell migration2,3. The extent to which mechanical inputs contribute to development, and how they do this, remains poorly defined. Here we show that a mechanotransduction pathway operates between the body-wall muscles of Caenorhabditis elegans and the epidermis. This pathway involves, in addition to a Rac GTPase, three signalling proteins found at the hemidesmosome: p21-activated kinase (PAK-1), the adaptor GIT-1 and its partner PIX-1. The phosphorylation of intermediate filaments is one output of this pathway. Tension exerted by adjacent muscles or externally exerted mechanical pressure maintains GIT-1 at hemidesmosomes and stimulates PAK-1 activity through PIX-1 and Rac. This pathway promotes the maturation of a hemidesmosome into a junction that can resist mechanical stress and contributes to coordinating the morphogenesis of epidermal and muscle tissues. Our findings suggest that the C. elegans hemidesmosome is not only an attachment structure, but also a mechanosensor that responds to tension by triggering signalling processes. We suggest that similar pathways could promote epithelial morphogenesis or wound healing in other organisms in which epithelial cells adhere to tension-generating contractile cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Muscle tension promotes C. elegans hemidesmosome maturation.
Figure 2: PAK-1 function is required for CeHD maturation.
Figure 3: PAK-1-induced intermediate-filament phosphorylation depends on muscle tension.
Figure 4: GIT-1 maintenance at CeHDs in a tension-dependent manner and PIX-1 promote PAK-1 activation.

Similar content being viewed by others

References

  1. Orr, A. W., Helmke, B. P., Blackman, B. R. & Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 10, 11–20 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009)

    Article  CAS  Google Scholar 

  3. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nature Rev. Mol. Cell Biol. 10, 34–43 (2009)

    Article  CAS  Google Scholar 

  4. Chisholm, A. D. & Hardin, J. Epidermal morphogenesis. in WormBook (ed. The C. elegans Research Community) doi:10.1895/wormbook.1.7.1. (2005)

  5. Williams, B. D. & Waterston, R. H. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J. Cell Biol. 124, 475–490 (1994)

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, H. & Labouesse, M. The making of hemidesmosome structures in vivo. Dev. Dyn. 239, 1465–1476 (2010)

    Article  CAS  PubMed  Google Scholar 

  7. Costa, M., Draper, B. W. & Priess, J. R. The role of actin filaments in patterning the Caenorhabditis elegans cuticle. Dev. Biol. 184, 373–384 (1997)

    Article  CAS  PubMed  Google Scholar 

  8. Katsumi, A. et al. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 158, 153–164 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawada, Y. & Sheetz, M. P. Force transduction by triton cytoskeletons. J. Cell Biol. 156, 609–615 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bosher, J. M. et al. The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J. Cell Biol. 161, 757–768 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hresko, M. C., Schriefer, L. A., Shrimankar, P. & Waterston, R. H. Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J. Cell Biol. 146, 659–672 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zahreddine, H., Zhang, H., Diogon, M., Nagamatsu, Y. & Labouesse, M. CRT-1/Calreticulin and the E3 Ligase EEL-1/HUWE1 control hemidesmosome maturation in C. elegans development. Curr. Biol. 20, 322–327 (2010)

    Article  CAS  PubMed  Google Scholar 

  13. Bokoch, G. M. Biology of the p21-activated kinases. Annu. Rev. Biochem. 72, 743–781 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Orr, A. W., Hahn, C., Blackman, B. R. & Schwartz, M. A. p21-activated kinase signaling regulates oxidant-dependent NF-κB activation by flow. Circ. Res. 103, 671–679 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goto, H. et al. Phosphorylation and reorganization of vimentin by p21-activated kinase (PAK). Genes Cells 7, 91–97 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Woo, W. M., Goncharov, A., Jin, Y. & Chisholm, A. D. Intermediate filaments are required for C. elegans epidermal elongation. Dev. Biol. 267, 216–229 (2004)

    Article  CAS  PubMed  Google Scholar 

  17. Lee, R. Y., Lobel, L., Hengartner, M., Horvitz, H. R. & Avery, L. Mutations in the α1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO J. 16, 6066–6076 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rogalski, T. M., Mullen, G. P., Gilbert, M. M., Williams, B. D. & Moerman, D. G. The unc-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. J. Cell Biol. 150, 253–264 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bourne, H. R., Sanders, D. A. & McCormick, F. The GTPase superfamily: conserved structure and molecular mechanism. Nature 349, 117–127 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Gally, C. et al. Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles. Development 136, 3109–3119 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Zhao, Z. S., Manser, E., Loo, T. H. & Lim, L. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. 20, 6354–6363 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, H., Webb, D. J., Asmussen, H., Niu, S. & Horwitz, A. F. A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J. Neurosci. 25, 3379–3388 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lucanic, M. & Cheng, H. J. A RAC/CDC-42-independent GIT/PIX/PAK signaling pathway mediates cell migration in C. elegans. PLoS Genet. 4, e1000269 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Giannone, G. & Sheetz, M. P. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol. 16, 213–223 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hodgkin, J. Male phenotypes and mating efficiency in Caenorhabditis elegans. Genetics 103, 43–64 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Reddien, P. W. & Horvitz, H. R. CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biol. 2, 131–136 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Kaminsky, R. et al. SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Dev. Cell 17, 724–735 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Gilleard, J. S., Barry, J. D. & Johnstone, I. L. cis regulatory requirements for hypodermal cell-specific expression of the Caenorhabditis elegans cuticle collagen gene dpy-7. Mol. Cell. Biol. 17, 2301–2311 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson, D. C., Gill, J. S., Cinalli, R. M. & Nance, J. Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts. Science 320, 1771–1774 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilleard, J. S., Shafi, Y., Barry, J. D. & McGhee, J. D. ELT-3: a Caenorhabditis elegans GATA factor expressed in the embryonic epidermis during morphogenesis. Dev. Biol. 208, 265–280 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Chen, W., Chen, S., Yap, S. F. & Lim, L. The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRac1 and CDC42Ce at hypodermal cell boundaries during embryo elongation. J. Biol. Chem. 271, 26362–26368 (1996)

    Article  CAS  PubMed  Google Scholar 

  36. Francis, R. & Waterston, R. H. Muscle cell attachment in Caenorhabditis elegans. J. Cell Biol. 114, 465–479 (1991)

    Article  CAS  PubMed  Google Scholar 

  37. Schnabel, R. Duels without obvious sense: counteracting inductions involved in body wall muscle development in the Caenorhabditis elegans embryo. Development 121, 2219–2232 (1995)

    CAS  PubMed  Google Scholar 

  38. Karabinos, A., Schmidt, H., Harborth, J., Schnabel, R. & Weber, K. Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development. Proc. Natl Acad. Sci. USA 98, 7863–7868 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karabinos, A., Schulze, E., Schunemann, J., Parry, D. A. & Weber, K. In vivo and in vitro evidence that the four essential intermediate filament (IF) proteins A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system. J. Mol. Biol. 333, 307–319 (2003)

    Article  CAS  PubMed  Google Scholar 

  40. Hapiak, V. et al. mua-6, a gene required for tissue integrity in Caenorhabditis elegans, encodes a cytoplasmic intermediate filament. Dev. Biol. 263, 330–342 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. Iannuccelli, E. et al. NEMO: a tool for analyzing gene and chromosome territory distributions from 3D-FISH experiments. Bioinformatics 26, 696–697 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to H.-J. Cheng, the CGC and NBP-Japan, L. Lim, J. Nance, C. Gally and L. Broday for reagents, as well as M. Argentini for technical advice. We thank J. Ahringer for a discussion, and O. Pourquié, J.-L. Bessereau, S. Jarriault and members of the Labouesse laboratory (C. Gally, I. Kolotueva, N. Osmani and S. Quintin) for critical reading of the manuscript. This work was supported by grants from the ANR, ARC and EU (STREP-FP6 programme) (M.L.) and by institutional funds from the CNRS and INSERM.

Author information

Authors and Affiliations

Authors

Contributions

H. Zhang and M.L. designed the study, analysed the data and wrote the paper. H. Zhang conducted most of the experiments. F.L. and H. Zahreddine made some initial observations (tension-change modification of the epidermis, and PAK-1 distribution and mutant phenotype) that proved to be essential for designing the study. D.R. provided technical help. M.K. helped to design and analyse the pressing experiment.

Corresponding author

Correspondence to Michel Labouesse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1 and Supplementary Figures 1-10 with legends. (PDF 5847 kb)

Supplementary Movie 1

This file contains Supplementary Movie 1 – see Supplementary Information file page 19 for full legend. (MOV 1183 kb)

Supplementary Movie 2

This file contains Supplementary Movie 2 – see Supplementary Information file page 19 for full legend. (MOV 997 kb)

Supplementary Movie 3

This file contains Supplementary Movie 3 – see Supplementary Information file page 19 for full legend. (MOV 494 kb)

Supplementary Movie 4

This file contains Supplementary Movie 4 – see Supplementary Information file page 19 for legend. (MOV 830 kb)

Supplementary Movie 5

This file contains Supplementary Movie 5 – see Supplementary Information file page 19 for full legend. (MOV 680 kb)

Supplementary Movie 6

This file contains Supplementary Movie 6 – see Supplementary Information file page 19 for full legend. (MOV 986 kb)

Supplementary Movie 7

This file contains Supplementary Movie 7 – see Supplementary Information file page 19 for full legend. (MOV 1189 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Landmann, F., Zahreddine, H. et al. A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 471, 99–103 (2011). https://doi.org/10.1038/nature09765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09765

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing