Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a potassium ion transporter, TrkH

Abstract

The TrkH/TrkG/KtrB proteins mediate K+ uptake in bacteria and probably evolved from simple K+ channels by multiple gene duplications or fusions. Here we present the crystal structure of a TrkH from Vibrio parahaemolyticus. TrkH is a homodimer, and each protomer contains an ion permeation pathway. A selectivity filter, similar in architecture to those of K+ channels but significantly shorter, is lined by backbone and side-chain oxygen atoms. Functional studies showed that TrkH is selective for permeation of K+ and Rb+ over smaller ions such as Na+ or Li+. Immediately intracellular to the selectivity filter are an intramembrane loop and an arginine residue, both highly conserved, which constrict the permeation pathway. Substituting the arginine with an alanine significantly increases the rate of K+ flux. These results reveal the molecular basis of K+ selectivity and suggest a novel gating mechanism for this large and important family of membrane transport proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Function and structure of VpTrkH.
Figure 2: The VpTrkH pore.
Figure 3: Selectivity filter of VpTrkH.
Figure 4: Constriction formed by Arg 468 and the intramembrane loop.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors are deposited in Protein Data Bank under accession number 3PJZ.

References

  1. Hille, B. Ion Channels of Excitable Membranes Ch. 1, 3rd edn (Sinauer, 2001)

    Google Scholar 

  2. Schultz, S. G., Epstein, W. & Solomon, A. K. Cation transport in Escherichia coli. IV. Kinetics of net K uptake. J. Gen. Physiol. 47, 329–346 (1963)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kroll, R. G. & Booth, I. R. The role of potassium transport in the generation of a pH gradient in Escherichia coli . Biochem. J. 198, 691–698 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Plack, R. H., Jr & Rosen, B. P. Cation/proton antiport systems in Escherichia coli. Absence of potassium/proton antiporter activity in a pH-sensitive mutant. J. Biol. Chem. 255, 3824–3825 (1980)

    CAS  PubMed  Google Scholar 

  5. Bakker, E. P. & Mangerich, W. E. Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. J. Bacteriol. 147, 820–826 (1981)

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Skou, J. C. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23, 394–401 (1957)

    Article  CAS  PubMed  Google Scholar 

  7. Tholema, N. et al. All four putative selectivity filter glycine residues in KtrB are essential for high affinity and selective K+ uptake by the KtrAB system from Vibrio alginolyticus . J. Biol. Chem. 280, 41146–41154 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Jan, L. Y. & Jan, Y. N. Cloned potassium channels from eukaryotes and prokaryotes. Annu. Rev. Neurosci. 20, 91–123 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Durell, S. R., Hao, Y., Nakamura, T., Bakker, E. P. & Guy, H. R. Evolutionary relationship between K+ channels and symporters. Biophys. J. 77, 775–788 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Durell, S. R. & Guy, H. R. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys. J. 77, 789–807 (1999)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  11. Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998)

    Article  CAS  ADS  PubMed  Google Scholar 

  12. Durell, S. R., Bakker, E. P. & Guy, H. R. Does the KdpA subunit from the high affinity K+-translocating P-type KDP-ATPase have a structure similar to that of K+ channels? Biophys. J. 78, 188–199 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tholema, N., Bakker, E. P., Suzuki, A. & Nakamura, T. Change to alanine of one out of four selectivity filter glycines in KtrB causes a two orders of magnitude decrease in the affinities for both K+ and Na+ of the Na+ dependent K+ uptake system KtrAB from Vibrio alginolyticus . FEBS Lett. 450, 217–220 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Mäser, P. et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl Acad. Sci. USA 99, 6428–6433 (2002)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Zeng, G. F., Pypaert, M. & Slayman, C. L. Epitope tagging of the yeast K+ carrier Trk2p demonstrates folding that is consistent with a channel-like structure. J. Biol. Chem. 279, 3003–3013 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Mutations in the K+ channel signature sequence. Biophys. J. 66, 1061–1067 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, N., Ye, S., Alam, A., Chen, L. & Jiang, Y. Atomic structure of a Na+- and K+-conducting channel. Nature 440, 570–574 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  18. Stumpe, S. & Bakker, E. P. Requirement of a large K+-uptake capacity and of extracytoplasmic protease activity for protamine resistance of Escherichia coli . Arch. Microbiol. 167, 126–136 (1997)

    Article  CAS  PubMed  Google Scholar 

  19. Alkhuder, K., Meibom, K. L., Dubail, I., Dupuis, M. & Charbit, A. Identification of trkH, encoding a potassium uptake protein required for Francisella tularensis systemic dissemination in mice. PLoS ONE 5, e8966 (2010)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Albright, R. A., Ibar, J. L., Kim, C. U., Gruner, S. M. & Morais-Cabral, J. H. The RCK domain of the KtrAB K+ transporter: multiple conformations of an octameric ring. Cell 126, 1147–1159 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. Albright, R. A., Joh, K. & Morais-Cabral, J. H. Probing the structure of the dimeric KtrB membrane protein. J. Biol. Chem. 282, 35046–35055 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Heginbotham, L., Kolmakova-Partensky, L. & Miller, C. Functional reconstitution of a prokaryotic K+ channel. J. Gen. Physiol. 111, 741–749 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58 (1991)

    Article  CAS  ADS  PubMed  Google Scholar 

  24. Daley, D. O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005)

    Article  CAS  ADS  PubMed  Google Scholar 

  25. Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285, 100–102 (1999)

    Article  CAS  PubMed  Google Scholar 

  26. Lockless, S. W., Zhou, M. & MacKinnon, R. Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol. 5, e121 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energetic optimization of ion conduction rate by the K+ selectivity filter. Nature 414, 37–42 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  28. LeMasurier, M., Heginbotham, L. & Miller, C. KcsA: it’s a potassium channel. J. Gen. Physiol. 118, 303–314 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schlösser, A., Meldorf, M., Stumpe, S., Bakker, E. P. & Epstein, W. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli . J. Bacteriol. 177, 1908–1910 (1995)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  31. Zhou, M. & MacKinnon, R. A mutant KcsA K+ channel with altered conduction properties and selectivity filter ion distribution. J. Mol. Biol. 338, 839–846 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Kato, N. et al. Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters. Channels (Austin) 1, 161–171 (2007)

    Article  Google Scholar 

  33. Hänelt, I. et al. Gain of function mutations in membrane region M2C2 of KtrB open a gate controlling K+ transport by the KtrAB system from Vibrio alginolyticus . J. Biol. Chem. 285, 10318–10327 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Noda, M. et al. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127 (1984)

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Mikami, A. et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233 (1989)

    Article  CAS  ADS  PubMed  Google Scholar 

  36. Li, R. A. et al. Clockwise domain arrangement of the sodium channel revealed by μ-conotoxin (GIIIA) docking orientation. J. Biol. Chem. 276, 11072–11077 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Stary, A., Shafrir, Y., Hering, S., Wolschann, P. & Guy, H. R. Structural model of the Cav1.2 pore. Channels (Austin) 2, 210–215 (2008)

    Article  Google Scholar 

  38. Bossemeyer, D. et al. K+-transport protein TrkA of Escherichia coli is a peripheral membrane protein that requires other trk gene products for attachment to the cytoplasmic membrane. J. Biol. Chem. 264, 16403–16410 (1989)

    CAS  PubMed  Google Scholar 

  39. Schlösser, A., Hamann, A., Bossemeyer, D., Schneider, E. & Bakker, E. P. NAD+ binding to the Escherichia coli K+-uptake protein TrkA and sequence similarity between TrkA and domains of a family of dehydrogenases suggest a role for NAD+ in bacterial transport. Mol. Microbiol. 9, 533–543 (1993)

    Article  PubMed  Google Scholar 

  40. Nakamura, T., Yuda, R., Unemoto, T. & Bakker, E. P. KtrAB, a new type of bacterial K+-uptake system from Vibrio alginolyticus . J. Bacteriol. 180, 3491–3494 (1998)

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Roosild, T. P., Miller, S., Booth, I. R. & Choe, S. A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell 109, 781–791 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Roosild, T. P. et al. KTN (RCK) domains regulate K+ channels and transporters by controlling the dimer-hinge conformation. Structure 17, 893–903 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ho, B. K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  44. Love, J. et al. The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. J. Struct. Funct. Genomics 11, 191–199 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Punta, M. et al. Structural genomics target selection for the New York consortium on membrane protein structure. J. Struct. Funct. Genomics 10, 255–268 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  47. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  49. Cowtan, K. Error estimation and bias correction in phase-improvement calculations. Acta Crystallogr. D 55, 1555–1567 (1999)

    Article  CAS  PubMed  Google Scholar 

  50. Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis . Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  51. Epstein, W. & Kim, B. S. Potassium transport loci in Escherichia coli K-12. J. Bacteriol. 108, 639–644 (1971)

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Slotboom, D. J., Duurkens, R. H., Olieman, K. & Erkens, G. B. Static light scattering to characterize membrane proteins in detergent solution. Methods 46, 73–82 (2008)

    Article  CAS  PubMed  Google Scholar 

  53. Kendrick, B. S., Kerwin, B. A., Chang, B. S. & Philo, J. S. Online size-exclusion high-performance liquid chromatography light scattering and differential refractometry methods to determine degree of polymer conjugation to proteins and protein–protein or protein–ligand association states. Anal. Biochem. 299, 136–146 (2001)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Data for this study were measured at beamlines X4A, X4C, X25 and X29 of the National Synchrotron Light Source and the NE-CAT 24ID-C and E at the Advanced Photon Source. This work was supported by the U.S. National Institutes of Health (grants HL086392, DK088057 and GM05026-sub0007 to M.Z.) and the American Heart Association (0630148N to M.Z.). M.Z is a Pew Scholar in Biomedical Sciences. The New York Consortium on Membrane Protein Structure central facility is supported by grant GM05026 to W.A.H. as part of the Protein Structure Initiative (PSI-2) established by the National Institute of General Medical Sciences. We thank B. Honig for support, K. Jung for providing E. coli LB650, and J. Morais-Cabral, S.-Y. Lee, H. R. Guy, C. L. Slayman and E. P. Bakker for discussions and comments on the manuscript. M.Z. is grateful to R. MacKinnon for advice and support throughout the project.

Author information

Authors and Affiliations

Authors

Contributions

M.P., J.L., B.R. and W.A.H. identified TrkH/TrkG/KtrB homologues in the database. R.B., B.K. and J.L. cloned and tested expression of the homologues. Y.C., H.H., J.W., E.J.L. and M.Z. scaled up production of proteins, produced and refined VpTrkH crystals, and collected and analysed X-ray diffraction data. X.J., E.J.L. and M.Z. solved and refined the structures. V.K., S.Y. and E.M-H. analysed diffraction data and obtained a partial model in early stages of the project. Y.C., M.G.D., M.Q., Y.P., Y.J., J.A.J. and M.Z. characterized VpTrkH function. K.R.R. and W.A.H. advised on data collection and crystallography. E.J.L. and M.Z wrote the manuscript with inputs from all authors.

Corresponding author

Correspondence to Ming Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Table 1 and Supplementary Figures 1-10 with legends. (PDF 8359 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Jin, X., Huang, H. et al. Crystal structure of a potassium ion transporter, TrkH. Nature 471, 336–340 (2011). https://doi.org/10.1038/nature09731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09731

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing