Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The novel gene twenty-four defines a critical translational step in the Drosophila clock

Abstract

Daily oscillations of gene expression underlie circadian behaviours in multicellular organisms1. While attention has been focused on transcriptional and post-translational mechanisms1,2,3, other post-transcriptional modes have been less clearly delineated. Here we report mutants of a novel Drosophila gene twenty-four (tyf) that show weak behavioural rhythms. Weak rhythms are accompanied by marked reductions in the levels of the clock protein Period (PER) as well as more modest effects on Timeless (TIM). Nonetheless, PER induction in pacemaker neurons can rescue tyf mutant rhythms. TYF associates with a 5′-cap-binding complex, poly(A)-binding protein (PABP), as well as per and tim transcripts. Furthermore, TYF activates reporter expression when tethered to reporter messenger RNA even in vitro. Taken together, these data indicate that TYF potently activates PER translation in pacemaker neurons to sustain robust rhythms, revealing a new and important role for translational control in the Drosophila circadian clock.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Robust behavioural rhythms require tyf.
Figure 2: tyf is crucial for PER expression in pacemaker neurons.
Figure 3: PER induction rescues tyf mutant rhythms.
Figure 4: TYF specifically associates with the 5′-cap-binding complex PABP, and target gene transcripts.
Figure 5: TYF activates reporter expression when tethered to its RNA.

References

  1. Doherty, C. J. & Kay, S. A. Circadian control of global gene expression patterns. Annu. Rev. Genet. 44, 419–444 (2010)

    CAS  Article  Google Scholar 

  2. Zheng, X. & Sehgal, A. Probing the relative importance of molecular oscillations in the circadian clock. Genetics 178, 1147–1155 (2008)

    CAS  Article  Google Scholar 

  3. Harms, E., Kivimae, S., Young, M. W. & Saez, L. Posttranscriptional and posttranslational regulation of clock genes. J. Biol. Rhythms 19, 361–373 (2004)

    CAS  Article  Google Scholar 

  4. Dubruille, R. & Emery, P. A plastic clock: how circadian rhythms respond to environmental cues in Drosophila . Mol. Neurobiol. 38, 129–145 (2008)

    CAS  Article  Google Scholar 

  5. Stoleru, D., Peng, Y., Agosto, J. & Rosbash, M. Coupled oscillators control morning and evening locomotor behaviour of Drosophila . Nature 431, 862–868 (2004)

    ADS  CAS  Article  Google Scholar 

  6. Grima, B., Chelot, E., Xia, R. & Rouyer, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869–873 (2004)

    ADS  CAS  Article  Google Scholar 

  7. Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C. & Taghert, P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila . Cell 99, 791–802 (1999)

    CAS  Article  Google Scholar 

  8. Peng, Y., Stoleru, D., Levine, J. D., Hall, J. C. & Rosbash, M. Drosophila free-running rhythms require intercellular communication. PLoS Biol. 1, e13 (2003)

    Article  Google Scholar 

  9. Lin, Y., Stormo, G. D. & Taghert, P. H. The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 24, 7951–7957 (2004)

    CAS  Article  Google Scholar 

  10. Zeng, H., Hardin, P. E. & Rosbash, M. Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. EMBO J. 13, 3590–3598 (1994)

    CAS  Article  Google Scholar 

  11. Park, J. H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila . Proc. Natl Acad. Sci. USA 97, 3608–3613 (2000)

    ADS  CAS  Article  Google Scholar 

  12. Yang, Z. & Sehgal, A. Role of molecular oscillations in generating behavioral rhythms in Drosophila . Neuron 29, 453–467 (2001)

    CAS  Article  Google Scholar 

  13. Frisch, B., Hardin, P. E., Hamblen-Coyle, M. J., Rosbash, M. & Hall, J. C. A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Neuron 12, 555–570 (1994)

    CAS  Article  Google Scholar 

  14. Kim, E. Y., Ko, H. W., Yu, W., Hardin, P. E. & Edery, I. A. DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function. Mol. Cell. Biol. 27, 5014–5028 (2007)

    CAS  Article  Google Scholar 

  15. Blanchardon, E. et al. Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression. Eur. J. Neurosci. 13, 871–888 (2001)

    CAS  Article  Google Scholar 

  16. Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009)

    CAS  Article  Google Scholar 

  17. Kula-Eversole, E. et al. Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila . Proc. Natl Acad. Sci. USA 107, 13497–13502 (2010)

    ADS  Article  Google Scholar 

  18. Keryer-Bibens, C., Barreau, C. & Osborne, H. B. Tethering of proteins to RNAs by bacteriophage proteins. Biol. Cell 100, 125–138 (2008)

    CAS  Article  Google Scholar 

  19. Veleri, S., Brandes, C., Helfrich-Forster, C., Hall, J. C. & Stanewsky, R. A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain. Curr. Biol. 13, 1758–1767 (2003)

    CAS  Article  Google Scholar 

  20. Staiger, D. & Koster, T. Spotlight on post-transcriptional control in the circadian system. Cell. Mol. Life Sci. doi:10.1007/s00018–010–0513–5. (in the press)

  21. Dockendorff, T. C. et al. Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34, 973–984 (2002)

    CAS  Article  Google Scholar 

  22. Sofola, O. et al. The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior. J. Neurosci. 28, 10200–10205 (2008)

    CAS  Article  Google Scholar 

  23. Kadener, S. et al. A role for microRNAs in the Drosophila circadian clock. Genes Dev. 23, 2179–2191 (2009)

    CAS  Article  Google Scholar 

  24. Nagoshi, E. et al. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila . Nature Neurosci. 13, 60–68 (2010)

    CAS  Article  Google Scholar 

  25. So, W. V. & Rosbash, M. Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMBO J. 16, 7146–7155 (1997)

    CAS  Article  Google Scholar 

  26. Stanewsky, R., Jamison, C. F., Plautz, J. D., Kay, S. A. & Hall, J. C. Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila . EMBO J. 16, 5006–5018 (1997)

    CAS  Article  Google Scholar 

  27. Majercak, J., Sidote, D., Hardin, P. E. & Edery, I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 219–230 (1999)

    CAS  Article  Google Scholar 

  28. Suri, V., Lanjuin, A. & Rosbash, M. TIMELESS-dependent positive and negative autoregulation in the Drosophila circadian clock. EMBO J. 18, 675–686 (1999)

    CAS  Article  Google Scholar 

  29. Suri, V., Hall, J. C. & Rosbash, M. Two novel doubletime mutants alter circadian properties and eliminate the delay between RNA and protein in Drosophila . J. Neurosci. 20, 7547–7555 (2000)

    CAS  Article  Google Scholar 

  30. Green, C. B. et al. Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc. Natl Acad. Sci. USA 104, 9888–9893 (2007)

    ADS  CAS  Article  Google Scholar 

  31. Sharma, Y., Cheung, U., Larsen, E. W. & Eberl, D. F. PPTGAL, a convenient GAL4 P-element vector for testing expression of enhancer fragments in Drosophila . Genesis 34, 115–118 (2002)

    CAS  Article  Google Scholar 

  32. Lykke-Andersen, J., Shu, M. D. & Steitz, J. A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000)

    CAS  Article  Google Scholar 

  33. Kaneko, M. & Hall, J. C. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol. 422, 66–94 (2000)

    CAS  Article  Google Scholar 

  34. Cheng, Y., Gvakharia, B. & Hardin, P. E. Two alternatively spliced transcripts from the Drosophila period gene rescue rhythms having different molecular and behavioral characteristics. Mol. Cell. Biol. 18, 6505–6514 (1998)

    CAS  Article  Google Scholar 

  35. Zhao, J. et al. Drosophila clock can generate ectopic circadian clocks. Cell 113, 755–766 (2003)

    CAS  Article  Google Scholar 

  36. Osterwalder, T., Yoon, K. S., White, B. H. & Keshishian, H. A conditional tissue-specific transgene expression system using inducible GAL4 . Proc. Natl Acad. Sci. USA 98, 12596–12601 (2001)

    ADS  CAS  Article  Google Scholar 

  37. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166, 1775–1782 (2004)

    CAS  Article  Google Scholar 

  38. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S. E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nature Genet. 40, 476–483 (2008)

    CAS  Article  Google Scholar 

  39. Lim, C. et al. Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila . Curr. Biol. 17, 1082–1089 (2007)

    CAS  Article  Google Scholar 

  40. Lim, C. et al. Functional role of CREB-binding protein in the circadian clock system of Drosophila melanogaster . Mol. Cell. Biol. 27, 4876–4890 (2007)

    CAS  Article  Google Scholar 

  41. Matsumoto, A. et al. A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev. 21, 1687–1700 (2007)

    CAS  Article  Google Scholar 

  42. Houl, J. H., Yu, W., Dudek, S. M. & Hardin, P. E. Drosophila CLOCK is constitutively expressed in circadian oscillator and non-oscillator cells. J. Biol. Rhythms 21, 93–103 (2006)

    CAS  Article  Google Scholar 

  43. Picot, M., Cusumano, P., Klarsfeld, A., Ueda, R. & Rouyer, F. Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biol. 5, e315 (2007)

    Article  Google Scholar 

  44. Eulalio, A., Behm-Ansmant, I., Schweizer, D. & Izaurralde, E. P-body formation is a consequence, not the cause, of RNA-mediated gene silencing. Mol. Cell. Biol. 27, 3970–3981 (2007)

    CAS  Article  Google Scholar 

  45. Roy, G., Miron, M., Khaleghpour, K., Lasko, P. & Sonenberg, N. The Drosophila poly(A) binding protein-interacting protein, dPaip2, is a novel effector of cell growth. Mol. Cell. Biol. 24, 1143–1154 (2004)

    CAS  Article  Google Scholar 

  46. Nakamura, A., Sato, K. & Hanyu-Nakamura, K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell 6, 69–78 (2004)

    CAS  Article  Google Scholar 

  47. Monzo, K. et al. Fragile X mental retardation protein controls trailer hitch expression and cleavage furrow formation in Drosophila embryos. Proc. Natl Acad. Sci. USA 103, 18160–18165 (2006)

    ADS  CAS  Article  Google Scholar 

  48. Satterfield, T. F. & Pallanck, L. J. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum. Mol. Genet. 15, 2523–2532 (2006)

    CAS  Article  Google Scholar 

  49. Wessel, D. & Flugge, U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 138, 141–143 (1984)

    CAS  Article  Google Scholar 

  50. Thoma, C., Ostareck-Lederer, A. & Hentze, M. W. A poly(A) tail-responsive in vitro system for cap- or IRES-driven translation from HeLa cells. Methods Mol. Biol. 257, 171–180 (2004)

    CAS  PubMed  Google Scholar 

  51. Castagnetti, S., Hentze, M. W., Ephrussi, A. & Gebauer, F. Control of oskar mRNA translation by Bruno in a novel cell-free system from Drosophila ovaries. Development 127, 1063–1068 (2000)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Edery, J. Hall, H. Keshishian, M. Rosbash, F. Rouyer, A. Sehgal, the Bloomington Drosophila stock center, Harvard Exelixis Drosophila stock collection, KAIST GenExel Drosophila library and the National Institute of Genetics for Drosophila strains; P. Hardin, E. Izaurralde, A. Nakamura, M. Rosbash and N. Sonenberg for antibodies; J. Lykke-Andersen for plasmids; K. E. Duncan for suggestions on in vitro translation assays. This work was supported by grants from the Brain Research Center of the 21st Century Frontier Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology, the Republic of Korea (J.C.) and from the National Institutes of Health (R01NS059042, R01NS052903, R01MH067870; R.A.)

Author information

Authors and Affiliations

Authors

Contributions

R.A. and J.C. conceived the study; R.A., C.L. and J.C. designed the experiments; C.L. (under the supervision of R.A.) and J.L (under the supervision of J.C.) jointly completed Figs 1 and 2, Supplementary Figs 1, 4, 8, 14 and Supplementary Tables 2 and 3; J.L., S.M.P. and S.K.J. performed and analysed the experiments in Supplementary Fig. 13; J.L., C.C. and J.K. performed the genome-wide behavioural screen; C.C. performed GST pull-down studies in Supplementary Fig. 12a; V.L.K. performed PDF quantification analysis in Supplementary Fig. 5b; C.L. performed and analysed experiments in all remaining Figures, Supplementary Figures and Tables; C.L. and R.A. wrote the manuscript.

Corresponding authors

Correspondence to Ravi Allada or Joonho Choe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures1-15 with legends and Supplementary Tables 1-5. (PDF 5471 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lim, C., Lee, J., Choi, C. et al. The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature 470, 399–403 (2011). https://doi.org/10.1038/nature09728

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09728

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing