Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intrinsic transition of embryonic stem-cell differentiation into neural progenitors


The neural fate is generally considered to be the intrinsic direction of embryonic stem (ES) cell differentiation. However, little is known about the intracellular mechanism that leads undifferentiated cells to adopt the neural fate in the absence of extrinsic inductive signals. Here we show that the zinc-finger nuclear protein Zfp521 is essential and sufficient for driving the intrinsic neural differentiation of mouse ES cells. In the absence of the neural differentiation inhibitor BMP4, strong Zfp521 expression is intrinsically induced in differentiating ES cells. Forced expression of Zfp521 enables the neural conversion of ES cells even in the presence of BMP4. Conversely, in differentiation culture, Zfp521-depleted ES cells do not undergo neural conversion but tend to halt at the epiblast state. Zfp521 directly activates early neural genes by working with the co-activator p300. Thus, the transition of ES cell differentiation from the epiblast state into neuroectodermal progenitors specifically depends on the cell-intrinsic expression and activator function of Zfp521.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The early neuroectodermal gene Zfp521 strongly promotes neural differentiation in ES cell culture.
Figure 2: Zfp521 expression pattern in early mouse embryos.
Figure 3: Zfp521 is required for early neural differentiation of ES cells.
Figure 4: Zfp521 is required to advance the differentiation step from the epiblast-like state into the early neuroectodermal state.
Figure 5: Zfp521 is directly involved in the activation of early neuroectodermal genes and functions together with the co-activator p300.
Figure 6: Summary of Zfp521’s role in the initiation of neural differentiation.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Microarray data have been deposited in GEO under accession number GSE25593.


  1. Muñoz-Sanjuán, I. & Hemmati-Brivanlou, A. Neural induction, the default model and embryonic stem cells. Nature Rev. Neurosci. 3, 271–280 (2002)

    Article  Google Scholar 

  2. De Robertis, E. M. & Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 380, 37–40 (1996)

    CAS  Article  ADS  Google Scholar 

  3. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction by the chd and BMP-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995)

    CAS  Article  ADS  Google Scholar 

  4. Lamb, T. M. et al. Neural induction by the secreted polypeptide noggin. Science 262, 713–718 (1993)

    CAS  Article  ADS  Google Scholar 

  5. Reversade, B., Kuroda, H., Lee, H., Mays, A. & De Robertis, E. M. Depletion of Bmp2, Bmp4, Bmp7 and Spemann organizer signals induces massive brain formation in Xenopus embryos. Development 132, 3381–3392 (2005)

    CAS  Article  Google Scholar 

  6. Di Giorgio, F. P., Carrasco, M. A., Siao, M. C., Maniatis, T. & Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nature Neurosci. 10, 608–614 (2007)

    CAS  Article  Google Scholar 

  7. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000)

    CAS  Article  Google Scholar 

  8. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nature Neurosci. 8, 288–296 (2005)

    CAS  Article  Google Scholar 

  9. Smukler, S. R., Runciman, S. B., Xu, S. & van der Kooy, D. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J. Cell Biol. 172, 79–90 (2006)

    CAS  Article  Google Scholar 

  10. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002)

    CAS  Article  Google Scholar 

  11. Abranches, E. et al. Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo. PLoS ONE 4, e6286 (2009)

    Article  ADS  Google Scholar 

  12. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008)

    CAS  Article  Google Scholar 

  13. Aubert, J. et al. Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-GFP knock-in mice. Proc. Natl Acad. Sci. USA 100, 11836–11841 (2003)

    CAS  Article  ADS  Google Scholar 

  14. Jakt, L. M., Okada, M. & Nishikawa, S.-I. An open source client-server system for the analysis of Affymetrix microarray data. Genome Informat. 14, 276–277 (2003)

    Google Scholar 

  15. Warming, S. et al. Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Krüppel-like zinc finger protein. Blood 101, 1934–1940 (2003)

    CAS  Article  Google Scholar 

  16. Bond, H. M. et al. Early hematopoietic zinc finger protein-zinc finger protein 521: a candidate regulator of diverse immature cells. Int. J. Biochem. Cell Biol. 40, 848–854 (2008)

    CAS  Article  Google Scholar 

  17. von Bubnoff, A. et al. Phylogenetic footprinting and genome scanning identify vertebrate BMP response elements and new target genes. Dev. Biol. 281, 210–226 (2005)

    CAS  Article  Google Scholar 

  18. Benchabane, H. & Wrana, J. L. GATA- and Smad1-dependent enhancers in the Smad7 gene differentially interpret bone morphogenetic protein concentrations. Mol. Cell. Biol. 23, 6646–6661 (2003)

    CAS  Article  Google Scholar 

  19. Gajović, S., St-Onge, L., Yokota, Y. & Gruss, P. Retinoic acid mediates Pax6 expression during in vitro differentiation of embryonic stem cells. Differentiation 62, 187–192 (1997)

    PubMed  Google Scholar 

  20. Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994)

    CAS  Article  Google Scholar 

  21. Kunath, T. et al. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134, 2895–2902 (2007)

    CAS  Article  Google Scholar 

  22. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007)

    CAS  Article  ADS  Google Scholar 

  23. Ding, J. et al. Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395, 702–707 (1998)

    CAS  Article  ADS  Google Scholar 

  24. Lin, A. C., Roche, A. E., Wilk, J. & Svensson, E. C. The N termini of Friend of GATA (FOG) proteins define a novel transcriptional repression motif and a superfamily of transcriptional repressors. J. Biol. Chem. 279, 55017–55023 (2004)

    CAS  Article  Google Scholar 

  25. Wu, M. et al. Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone 44, 528–536 (2009)

    CAS  Article  Google Scholar 

  26. Chan, H. M. & La Thangue, N. B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363–2373 (2001)

    CAS  PubMed  Google Scholar 

  27. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009)

    CAS  Article  ADS  Google Scholar 

  28. Brunelli, S., Silva Casey, E., Bell, D., Harland, R. & Lovell-Badge, R. Expression of Sox3 throughout the developing central nervous system is dependent on the combined action of discrete, evolutionarily conserved regulatory elements. Genesis 36, 12–24 (2003)

    CAS  Article  Google Scholar 

  29. de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003)

    CAS  Article  Google Scholar 

  30. Tsai, R. Y. & Reed, R. R. Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz. Mol. Cell. Biol. 18, 6447–6456 (1998)

    CAS  Article  Google Scholar 

  31. Zhao, S., Nichols, J., Smith, A. G. & Li, M. SoxB transcription factors specify neuroectodermal lineage choice in ES cells. Mol. Cell. Neurosci. 27, 332–342 (2004)

    CAS  Article  Google Scholar 

  32. Kuhlbrodt, K. et al. Cooperative function of POU proteins and SOX proteins in glial cells. J. Biol. Chem. 273, 16050–16057 (1998)

    CAS  Article  Google Scholar 

  33. Tanaka, S. et al. Interplay of SOX and POU factors in regulation of the Nestin gene in neural primordial cells. Mol. Cell. Biol. 24, 8834–8846 (2004)

    CAS  Article  Google Scholar 

  34. Zwart, R., Broos, L., Grosveld, G. & Meijer, D. The restricted expression pattern of the POU factor Oct-6 during early development of the mouse nervous system. Mech. Dev. 54, 185–194 (1996)

    CAS  Article  Google Scholar 

  35. Jørgensen, H. F. et al. REST selectively represses a subset of RE1-containing neuronal genes in mouse embryonic stem cells. Development 136, 715–721 (2009)

    Article  Google Scholar 

  36. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnol. 25, 681–686 (2007)

    CAS  Article  Google Scholar 

  37. Nagy, A., Gertsenstein, M. G., Vintersten, K. & Behringer, R. Manipulating the Mouse Embryo (Cold Spring Harbor Press, 2003)

  38. Ikeya, M. et al. Gene disruption/knock-in analysis of mONT3: vector construction by employing both in vivo and in vitro recombinations. Int. J. Dev. Biol. 49, 807–823 (2005)

    CAS  Article  Google Scholar 

Download references


We are grateful to H. Niwa for comments; M. Okada for advice on the GeneChip study; Y. Toyooka-Kamiya for constant encouragement and technical advice; H. Akimaru for advice on the shRNA knockdown study; and members of the Sasai laboratory for discussion and advice. This work was supported by grants-in-aid from MEXT, the Kobe Cluster Project and the Leading Project (Y.S.).

Author information

Authors and Affiliations



Y.S. designed the research and D.K. performed the majority of mES cell experiments with technical help from S.B., M.K. and R.Y. N.S., M.O., H.I. and K.W. collaborated with D.K. in the ChIP, hES cell, Xenopus and SFEB experiments. H.K. and K.N. performed the blastocyst injections and L.M.J. and S.-i.N. helped GeneChip screening.

Corresponding author

Correspondence to Yoshiki Sasai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-12 with legends and Supplementary Tables 1-2. (PDF 0 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kamiya, D., Banno, S., Sasai, N. et al. Intrinsic transition of embryonic stem-cell differentiation into neural progenitors. Nature 470, 503–509 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing