Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circadian clocks in human red blood cells

Abstract

Circadian (24 hour) clocks are fundamentally important for coordinated physiology in organisms as diverse as cyanobacteria and humans. All current models of the molecular circadian clockwork in eukaryotic cells are based on transcription–translation feedback loops. Non-transcriptional mechanisms in the clockwork have been difficult to study in mammalian systems. We circumvented these problems by developing novel assays using human red blood cells, which have no nucleus (or DNA) and therefore cannot perform transcription. Our results show that transcription is not required for circadian oscillations in humans, and that non-transcriptional events seem to be sufficient to sustain cellular circadian rhythms. Using red blood cells, we found that peroxiredoxins, highly conserved antioxidant proteins, undergo 24-hour redox cycles, which persist for many days under constant conditions (that is, in the absence of external cues). Moreover, these rhythms are entrainable (that is, tunable by environmental stimuli) and temperature-compensated, both key features of circadian rhythms. We anticipate that our findings will facilitate more sophisticated cellular clock models, highlighting the interdependency of transcriptional and non-transcriptional oscillations in potentially all eukaryotic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circadian oscillation of peroxiredoxin (PRX) oxidation in human RBCs.
Figure 2: Circadian rhythms of peroxiredoxin (PRX) oxidation are not affected by transcriptional and translational inhibition.
Figure 3: Temperature compensation of circadian peroxiredoxin oxidation rhythms.
Figure 4: Expression patterns and oligomerization of peroxiredoxins.
Figure 5: Circadian rhythms in haemoglobin oxidation and RBC metabolism.
Figure 6: Peroxiredoxin rhythms in nucleated cells.

Similar content being viewed by others

References

  1. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999)

    Article  CAS  Google Scholar 

  2. Takahashi, J. S., Hong, H. K., Ko, C. H. & McDearmon, E. L. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature Rev. Genet. 9, 764–775 (2008)

    Article  CAS  Google Scholar 

  3. Reddy, A. B. & O’Neill, J. S. Healthy clocks, healthy body, healthy mind. Trends Cell Biol. 20, 36–44 (2009)

    Article  Google Scholar 

  4. Woelfle, M. A., Ouyang, Y., Phanvijhitsiri, K. & Johnson, C. H. The adaptive value of circadian clocks; an experimental assessment in cyanobacteria. Curr. Biol. 14, 1481–1486 (2004)

    Article  CAS  Google Scholar 

  5. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Barger, L. K., Lockley, S. W., Rajaratnam, S. M. & Landrigan, C. P. Neurobehavioral, health, and safety consequences associated with shift work in safety-sensitive professions. Curr. Neurol. Neurosci. Rep. 9, 155–164 (2009)

    Article  Google Scholar 

  7. Tomita, J., Nakajima, M., Kondo, T. & Iwasaki, H. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Lakin-Thomas, P. L. Transcriptional feedback oscillators: maybe, maybe not. J. Biol. Rhythms 21, 83–92 (2006)

    Article  CAS  Google Scholar 

  9. Dodd, A. N. et al. The Arabidopsis circadian clock incorporates a cADPR-based feedback loop. Science 318, 1789–1792 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Johnson, C. H. et al. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269, 1863–1865 (1995)

    Article  ADS  CAS  Google Scholar 

  11. O’Neill, J. S., Maywood, E. S., Chesham, J. E., Takahashi, J. S. & Hastings, M. H. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320, 949–953 (2008)

    Article  ADS  Google Scholar 

  12. Harrisingh, M. C., Wu, Y., Lnenicka, G. A. & Nitabach, M. N. Intracellular Ca2+ regulates free-running circadian clock oscillation in vivo . J. Neurosci. 27, 12489–12499 (2007)

    Article  CAS  Google Scholar 

  13. Woolum, J. C. A re-examination of the role of the nucleus in generating the circadian rhythm in Acetabularia. J. Biol. Rhythms 6, 129–136 (1991)

    Article  CAS  Google Scholar 

  14. Dibner, C. et al. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 28, 123–134 (2009)

    Article  CAS  Google Scholar 

  15. Hall, A., Karplus, P. A. & Poole, L. B. Typical 2-Cys peroxiredoxins–structures, mechanisms and functions. FEBS J. 276, 2469–2477 (2009)

    Article  CAS  Google Scholar 

  16. Rhee, S. G., Jeong, W., Chang, T. S. & Woo, H. A. Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney. Int. 106 (Suppl.),. S3–S8 (2007)

    Article  CAS  Google Scholar 

  17. Reddy, A. B. et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 16, 1107–1115 (2006)

    Article  CAS  Google Scholar 

  18. Hastings, M. H., Reddy, A. B. & Maywood, E. S. A clockwork web: circadian timing in brain and periphery, in health and disease. Nature Rev. Neurosci. 4, 649–661 (2003)

    Article  CAS  Google Scholar 

  19. Hastings, M. H., Maywood, E. S. & Reddy, A. B. Two decades of circadian time. J. Neuroendocrinol. 20, 812–819 (2008)

    Article  CAS  Google Scholar 

  20. Wright, K. P., Jr, Hull, J. T. & Czeisler, C. A. Relationship between alertness, performance, and body temperature in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R1370–R1377 (2002)

    Article  CAS  Google Scholar 

  21. Barranco-Medina, S., Lazaro, J. J. & Dietz, K. J. The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett. 583, 1809–1816 (2009)

    Article  CAS  Google Scholar 

  22. Woo, H. A. et al. Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid. Immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J. Biol. Chem. 278, 47361–47364 (2003)

    Article  CAS  Google Scholar 

  23. Cho, C. S. et al. Irreversible inactivation of glutathione peroxidase 1 and reversible inactivation of peroxiredoxin II by H2O2 in red blood cells. Antioxid. Redox Signal. 12, 1235–1246 (2010)

    Article  CAS  Google Scholar 

  24. Griffon, N. et al. Tetramer-dimer equilibrium of oxyhemoglobin mutants determined from auto-oxidation rates. Protein Sci. 7, 673–680 (1998)

    Article  CAS  Google Scholar 

  25. Hewitt, J. A., Kilmartin, J. V., Eyck, L. F. & Perutz, M. F. Noncooperativity of the dimer in the reaction of hemoglobin with oxygen (human-dissociation-equilibrium-sulfhydryl-absorption-x-ray analysis). Proc. Natl Acad. Sci. USA 69, 203–207 (1972)

    Article  ADS  CAS  Google Scholar 

  26. Latenkov, V. P. Diurnal rhythm of acid-base equilibrium and blood gas composition [in Russian]. Biull. Eksp. Biol. Med. 101, 614–616 (1986)

    Article  CAS  Google Scholar 

  27. Kennett, E. C. et al. Investigation of methaemoglobin reduction by extracellular NADH in mammalian erythrocytes. Int. J. Biochem. Cell Biol. 37, 1438–1445 (2005)

    Article  CAS  Google Scholar 

  28. Ogo, S., Focesi, A., Jr, Cashon, R., Bonaventura, J. & Bonaventura, C. Interactions of nicotinamide adenine dinucleotides with varied states and forms of hemoglobin. J. Biol. Chem. 264, 11302–11306 (1989)

    CAS  PubMed  Google Scholar 

  29. Jacobsen, M. P. & Winzor, D. J. Characterization of the interactions of NADH with the dimeric and tetrameric states of methaemoglobin. Biochim. Biophys. Acta 1246, 17–23 (1995)

    Article  Google Scholar 

  30. Ghosh, A. K., Chance, B. & Pye, E. K. Metabolic coupling and synchronization of NADH oscillations in yeast cell populations. Arch. Biochem. Biophys. 145, 319–331 (1971)

    Article  CAS  Google Scholar 

  31. Hess, B., Brand, K. & Pye, K. Continuous oscillations in a cell-free extract of S. carlsbergensis . Biochem. Biophys. Res. Commun. 23, 102–108 (1966)

    Article  CAS  Google Scholar 

  32. Betz, A. & Chance, B. Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys. 109, 585–594 (1965)

    Article  CAS  Google Scholar 

  33. Rutter, J., Reick, M. & McKnight, S. L. Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307–331 (2002)

    Article  CAS  Google Scholar 

  34. Rutter, J., Reick, M., Wu, L. C. & McKnight, S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514 (2001)

    Article  CAS  Google Scholar 

  35. Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705 (2004)

    Article  CAS  Google Scholar 

  36. Yagita, K., Tamanini, F., van der Horst, G. T. J. & Okamura, H. Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292, 278–281 (2001)

    Article  ADS  CAS  Google Scholar 

  37. van der Horst, G. T. J. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999)

    Article  ADS  CAS  Google Scholar 

  38. Zhang, E. E. et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell 139, 199–210 (2009)

    Article  CAS  Google Scholar 

  39. Qin, X., Byrne, M., Xu, Y., Mori, T. & Johnson, C. H. Coupling of a core post-translational pacemaker to a slave transcription/translation feedback loop in a circadian system. PLoS Biol. 8, e1000394 (2010)

    Article  Google Scholar 

  40. Wood, Z. A., Schroder, E., Robin Harris, J. & Poole, L. B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32–40 (2003)

    Article  CAS  Google Scholar 

  41. Eelderink-Chen, Z. et al. A circadian clock in Saccharomyces cerevisiae . Proc. Natl Acad. Sci. USA 107, 2043–2047 (2010)

    Article  ADS  CAS  Google Scholar 

  42. Kippert, F., Saunders, D. S. & Blaxter, M. L. Caenorhabditis elegans has a circadian clock. Curr. Biol. 12, R47–R49 (2002)

    Article  CAS  Google Scholar 

  43. O’Neill, J. S. et al. Circadian rhythms persist without transcription in a eukaryote. Nature doi:10.1038/nature09654 (this issue).

  44. Corellou, F. et al. Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus . Plant Cell 21, 3436–3449 (2009)

    Article  CAS  Google Scholar 

  45. Johnson, C. H., Mori, T. & Xu, Y. A cyanobacterial circadian clockwork. Curr. Biol. 18, R816–R825 (2008)

    Article  CAS  Google Scholar 

  46. Reddy, A. B. et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 16, 1107–1115 (2006)

    Article  CAS  Google Scholar 

  47. Hu, T. et al. PEGylation of Val-1(α) destabilizes the tetrameric structure of hemoglobin. Biochemistry 48, 608–616 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust (083643/Z/07/Z), the MRC Centre for Obesity and Related metabolic Disorders (MRC CORD) and the NIHR Cambridge Biomedical Research Centre. We thank M. Jain and R. Edgar for discussions about the manuscript, A. Coles and J. Jones for providing access to samples, and G. van der Horst and F. Tamanini for providing access to Cry1 Cry2 knockout (and wild-type) mouse embryonic fibroblasts.

Author information

Authors and Affiliations

Authors

Contributions

A.B.R. and J.S.O’N. conceived, designed and performed the experiments, and wrote the manuscript.

Corresponding author

Correspondence to Akhilesh B. Reddy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2, Supplementary Figures 1-9 with legends and additional references. (PDF 4348 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neill, J., Reddy, A. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011). https://doi.org/10.1038/nature09702

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09702

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing