Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin–orbit qubit in a semiconductor nanowire

Abstract

Motion of electrons can influence their spins through a fundamental effect called spin–orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics1. Even at the level of single electrons, the spin–orbit interaction has proven promising for coherent spin rotations2. Here we implement a spin–orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin–orbit interaction is so strong that spin and motion can no longer be separated3,4. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth5. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p–n junction nanowires6. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Electric-dipole spin resonance.
Figure 2: Rabi oscillations.
Figure 3: Universal qubit control and coherence times.
Figure 4: Dynamical decoupling.

References

  1. Datta, S. & Das, B. Electronic analog of the electrooptic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    ADS  CAS  Article  Google Scholar 

  2. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single electron spin with electric fields. Science 318, 1430–1433 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  3. Fasth, C., Fuhrer, A., Samuelson, L., Golovach, V. N. & Loss, D. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. Phys. Rev. Lett. 98, 266801 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. Pfund, A., Shorubalko, I., Ensslin, K. & Leturcq, R. Spin-state mixing in InAs double quantum dots. Phys. Rev. B 76, 161308 (2007)

    ADS  Article  Google Scholar 

  5. Minot, E. D. et al. Single quantum dot nanowire LEDs. Nano Lett. 7, 367–371 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  6. van Weert, M. H. M. et al. Selective excitation and detection of spin states in a single nanowire quantum dot. Nano Lett. 9, 1989–1993 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. Nadj-Perge, S. et al. Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade. Phys. Rev. B 81, 201305 (2010)

    ADS  Article  Google Scholar 

  8. Pioro-Ladriere, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nature Phys. 4, 776–779 (2008)

    ADS  CAS  Article  Google Scholar 

  9. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)

    ADS  CAS  Article  Google Scholar 

  10. Pfund, A., Shorubalko, I., Ensslin, K. & Leturcq, R. Suppression of spin relaxation in an InAs nanowire double quantum dot. Phys. Rev. Lett. 99, 036801 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  11. Koppens, F. H. L. et al. Control and detection of singlet-triplet mixing in a random nuclear field. Science 309, 1346–1350 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. Johnson, A. C. et al. Triplet-singlet spin relaxation via nuclei in a double quantum dot. Nature 435, 925–928 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  13. Rashba, E. I. & Efros, A. L. Orbital mechanisms of electron-spin manipulation by an electric field. Phys. Rev. Lett. 91, 126405 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  14. Kato, Y. et al. Gigahertz electron spin manipulation using voltage-controlled g-tensor modulation. Science 299, 1201–1204 (2003)

    ADS  CAS  Article  PubMed  Google Scholar 

  15. Laird, E. A. et al. Hyperfine-mediated gate-driven electron spin resonance. Phys. Rev. Lett. 99, 246601 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  16. Golovach, V. N., Borhani, M. & Loss, D. Electric-dipole-induced spin resonance in quantum dots. Phys. Rev. B 74, 165319 (2006)

    ADS  Article  Google Scholar 

  17. Danon, J. & Nazarov, Y. V. Pauli spin blockade in the presence of strong spin-orbit coupling. Phys. Rev. B 80, 041301 (2009)

    ADS  Article  Google Scholar 

  18. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  19. Pryor, C. E. & Flatte, M. E. Lande g factors and orbital momentum quenching in semiconductor quantum dots. Phys. Rev. Lett. 96, 026804 (2006)

    ADS  Article  PubMed  Google Scholar 

  20. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008)

    ADS  CAS  Article  PubMed  Google Scholar 

  21. Koppens, F. H. L. et al. Universal phase shift and nonexponential decay of driven single-spin oscillations. Phys. Rev. Lett. 99, 106803 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  22. Obata, T. et al. Coherent manipulation of individual electron spin in a double quantum dot integrated with a micromagnet. Phys. Rev. B 81, 085317 (2010)

    ADS  Article  Google Scholar 

  23. Koppens, F. H. L., Nowack, K. C. & Vandersypen, L. M. K. Spin echo of a single electron spin in a quantum dot. Phys. Rev. Lett. 100, 236802 (2008)

    ADS  CAS  Article  PubMed  Google Scholar 

  24. Press, D., Ladd, T. D., Zhang, B. Y. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008)

    ADS  CAS  Article  PubMed  Google Scholar 

  25. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization. Nature Phys. 5, 903–908 (2009)

    ADS  CAS  Article  Google Scholar 

  26. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    ADS  CAS  Article  PubMed  Google Scholar 

  27. Bluhm, H. et al. Long coherence of electron spins coupled to a nuclear spin bath. Preprint at 〈http://arxiv.org/abs/1005.2995〉 (2010)

  28. Barthel, C., Medford, J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. Preprint at 〈http://arxiv.org/abs/1007.4255〉 (2010)

  29. Reilly, D. J. et al. Suppressing spin qubit dephasing by nuclear state preparation. Science 321, 817–821 (2008)

    ADS  CAS  Article  PubMed  Google Scholar 

  30. Fuchs, G. D., Dobrovitski, V. V., Toyli, D. M., Heremans, F. J. & Awschalom, D. D. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Nowack, R. Schouten, M. Laforest, K. Zuo, M. Hocevar, R. Algra, J. van Tilburg, M. Scheffler, G. de Lange, V. Dobrovitski, J. Danon, R. Hanson, R. Liu, Yu. V. Nazarov and L. Vandersypen for their help. This work has been supported by NWO/FOM (the Netherlands Organization for Scientific Research), an ERC Advanced Grant and through the DARPA program QUEST.

Author information

Authors and Affiliations

Authors

Contributions

S.N.-P., S.M.F. and L.P.K. designed the experiments. S.N.-P. and S.M.F. performed the measurements and analysed the data. E.P.A.M.B. provided nanowires. All authors wrote the manuscript.

Corresponding author

Correspondence to L. P. Kouwenhoven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary text, Supplementary Figures 1-5 with legends and additional references. (PDF 423 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nadj-Perge, S., Frolov, S., Bakkers, E. et al. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010). https://doi.org/10.1038/nature09682

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09682

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing