Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Has the Earth’s sixth mass extinction already arrived?



Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Relationship between extinction rates and the time interval over which the rates were calculated, for mammals.
Figure 2: Extinction magnitudes of IUCN-assessed taxa 6 in comparison to the 75% mass-extinction benchmark.
Figure 3: Extinction rate versus extinction magnitude.


  1. 1

    Novacek, M. J. The Biodiversity Crisis: Losing What Counts (The New Press, 2001)

    Google Scholar 

  2. 2

    Jablonski, D. Extinctions in the fossil record. Phil. Trans. R. Soc. Lond. B 344, 11–17 (1994)This paper summarizes, from a palaeontological perspective, the difficulties of comparing the past and present extinctions.

    ADS  Google Scholar 

  3. 3

    Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982)This is a statistical assessment of the Big Five extinction rates relative to background rates.

    ADS  CAS  PubMed  Google Scholar 

  4. 4

    Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006)This paper discusses the definition of mass extinctions and mass depletions, and the relative role of origination versus extinction rates in causing the diversity reductions that characterize the Big Five.

    ADS  CAS  Google Scholar 

  5. 5

    Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proc. Natl Acad. Sci. USA 105, 11536–11542 (2008)

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    IUCN. International Union for Conservation of Nature Red List 〈〉 (2010)

  7. 7

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010)

    ADS  CAS  PubMed  Google Scholar 

  8. 8

    Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002)

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997)

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Dirzo, R. & Raven, P. H. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167 (2003)This paper is an overview of the taxonomic and spatiotemporal patterns of biodiversity and the magnitude of the current biodiversity crisis.

    Google Scholar 

  11. 11

    Joppa, L. N., Roberts, D. L. & Pimm, S. L. How many species of flowering plants are there? Proc. R. Soc. Lond. B 10.1098/rspb.2010.1004 (2010)

  12. 12

    Leakey, R. & Lewin, R. The Sixth Extinction: Patterns of Life and the Future of Humankind (Doubleday, 1992)

    Google Scholar 

  13. 13

    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008)

    ADS  CAS  PubMed  Google Scholar 

  14. 14

    May, R. M., Lawton, J. H. & Stork, N. E. in Extinction Rates (eds Lawton, J. H. & May, R. M. ) Ch. 1, 1–24 (Oxford University Press, 1995)This paper compares fossil-background and recent extinction rates and explains the numerous assumptions that are required for the comparison.

    Google Scholar 

  15. 15

    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995)This paper explains and uses the E/MSY metric to compare the fossil-background, current, and predicted future extinction rates.

    ADS  CAS  Google Scholar 

  16. 16

    Myers, N. Mass extinctions: what can the past tell us about the present and future? Palaeogeogr. Palaeoclimatol. Palaeoecol. 82, 175–185 (1990)

    Google Scholar 

  17. 17

    Pimm, S. L. & Brooks, T. M. in Nature and Human Society: The Quest for a Sustainable World (eds Raven, P. H. & Williams, T. ) 46–62 (National Academy Press, 1997)

    Google Scholar 

  18. 18

    Barnosky, A. D. Heatstroke: Nature in an Age of Global Warming 1–269 (Island Press, 2009)

    Google Scholar 

  19. 19

    Vredenburg, V. T., Knapp, R. A., Tunstall, T. S. & Briggs, C. J. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc. Natl Acad. Sci. USA 107, 9689–9694 (2010)

    ADS  CAS  PubMed  Google Scholar 

  20. 20

    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010)

    ADS  CAS  Google Scholar 

  21. 21

    Avise, J. C., Walker, D. & Johns, G. C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. B 265, 1707–1712 (1998)

    CAS  Google Scholar 

  22. 22

    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007)

    ADS  CAS  PubMed  Google Scholar 

  23. 23

    Lu, P. J., Yogo, M. & Marshall, C. R. Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proc. Natl Acad. Sci. USA 103, 2736–2739 (2006)

    ADS  CAS  PubMed  Google Scholar 

  24. 24

    Vié, J.-C., Hilton-Taylor, C. & Stuart, S. N. (eds) Wildlife in a Changing World—An Analysis of the 2008 IUCN Red List of Threatened Species 180 (IUCN, 2009)

    Google Scholar 

  25. 25

    Baillie, J. E. M. et al. Toward monitoring global biodiversity. Conserv. Lett. 1, 18–26 (2008)

    Google Scholar 

  26. 26

    Şengör, A. M. C., Atayman, S. & Özeren, S. A scale of greatness and causal classification of mass extinctions: implications for mechanisms. Proc. Natl Acad. Sci. USA 105, 13736–13740 (2008)

    ADS  PubMed  Google Scholar 

  27. 27

    Pimm, S., Raven, P., Peterson, A., Sekercioglu, Ç. H. & Ehrlich, P. R. Human impacts on the rates of recent, present, and future bird extinctions. Proc. Natl Acad. Sci. USA 103, 10941–10946 (2006)

    ADS  CAS  PubMed  Google Scholar 

  28. 28

    Foote, M. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20, 424–444 (1994)This paper addresses the effect of interval length on extinction metrics using simulations.

    Google Scholar 

  29. 29

    Foote, M. & Raup, D. M. Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22, 121–140 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    PBDB. The Paleobiology Database 〈〉 (2010)

  31. 31

    NEOMAP. The Neogene Mammal Mapping Portal 〈〉 (2010)

  32. 32

    Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008)

    ADS  CAS  PubMed  Google Scholar 

  33. 33

    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006)

    Google Scholar 

  34. 34

    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008)This paper explains the methodology used by the IUCN to assess the extinction risks of extant species.

    Google Scholar 

  35. 35

    Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285–311 (1996)

    Google Scholar 

  36. 36

    Stork, N. E. Re-assessing current extinction rates. Biodivers. Conserv. 19, 357–371 (2010)

    Google Scholar 

  37. 37

    Jablonski, D. Lessons from the past: evolutionary impacts of mass extinctions. Proc. Natl Acad. Sci. USA 98, 5393–5398 (2001)

    ADS  CAS  PubMed  Google Scholar 

  38. 38

    Jablonski, D. Extinction and the spatial dynamics of biodiversity. Proc. Natl Acad. Sci. USA 105, 11528–11535 (2008)

    ADS  CAS  PubMed  Google Scholar 

  39. 39

    Purvis, A., Jones, K. E. & Mace, G. M. Extinction. Bioessays 22, 1123–1133 (2000)

    CAS  PubMed  Google Scholar 

  40. 40

    Agapow, P.-M. et al. The impact of the species concept on biodiversity studies. Q. Rev. Biol. 79, 161–179 (2004)

    PubMed  Google Scholar 

  41. 41

    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008)

    ADS  CAS  PubMed  Google Scholar 

  42. 42

    Steadman, D. W. Extinction and Biogeography of Tropical Pacific Birds (University of Chicago Press, 2006)

    Google Scholar 

  43. 43

    Raup, D. M. & Jablonski, D. Geography of end-Cretaceous marine bivalve extinctions. Science 260, 971–973 (1993)

    ADS  CAS  PubMed  Google Scholar 

  44. 44

    Regan, H. M., Lupia, R., Drinnan, A. N. & Burgman, M. A. The currency and tempo of extinction. Am. Nat. 157, 1–10 (2001)

    CAS  PubMed  Google Scholar 

  45. 45

    Carrasco, M. A., Barnosky, A. D. & Graham, R. W. Quantifying the extent of North American mammal extinction relative to the pre-anthropogenic baseline. PLoS ONE 4, e8331 (2009)This paper uses species-area relationships based on fossil data to demonstrate that the recent biodiversity baseline for mammals is substantially depressed with respect to its normal condition.

    ADS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010)

    PubMed  Google Scholar 

  47. 47

    Anderson, C. N. K., Ramakrishnan, U., Chan, Y. L. & Hadly, E. A. Serial SimCoal: a population genetics model for data from multiple populations and points in time. Bioinformatics 21, 1733–1734 (2005)

    CAS  PubMed  Google Scholar 

  48. 48

    Ramakrishnan, U. & Hadly, E. A. Using phylochronology to reveal cryptic population histories: review and synthesis of four ancient DNA studies. Mol. Ecol. 18, 1310–1330 (2009)This paper uses a hypothesis-testing framework to reveal population histories and compare past populations to present ones.

    PubMed  Google Scholar 

  49. 49

    Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–774 (2010)

    ADS  CAS  PubMed  Google Scholar 

  50. 50

    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005)

    ADS  CAS  PubMed  Google Scholar 

  51. 51

    Davies, T. J. et al. Phylogenetic trees and the future of mammalian biodiversity. Proc. Natl Acad. Sci. USA 105, 11556–11563 (2008)

    ADS  CAS  PubMed  Google Scholar 

  52. 52

    Isaac, N. J. B., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. M. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007)

    ADS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Russell, G. J., Brooks, T. M., McKinney, M. M. & Anderson, C. G. Present and future taxonomic selectivity in bird and mammal extinctions. Conserv. Biol. 12, 1365–1376 (1998)

    Google Scholar 

  54. 54

    Erwin, D. H. The Permo-Triassic extinction. Nature 367, 231–236 (1994)

    ADS  Google Scholar 

  55. 55

    Arens, N. C. & West, I. D. Press-pulse: a general theory of mass extinction? Paleobiology 34, 456–471 (2008)

    Google Scholar 

  56. 56

    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008)

    PubMed  Google Scholar 

  57. 57

    Jablonski, D. in Dynamics of Extinction (ed. Elliott, D. K. ) 183–229 (Wiley, 1986)

    Google Scholar 

  58. 58

    Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980)

    ADS  CAS  PubMed  Google Scholar 

  59. 59

    Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010)

    ADS  CAS  PubMed  Google Scholar 

  60. 60

    Prauss, M. L. The K/Pg boundary at Brazos-River, Texas, USA—an approach by marine palynology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 283, 195–215 (2009)

    Google Scholar 

  61. 61

    GBO3. Global Biodiversity Outlook 3 94 (Secretariat of the Convention on Biological Diversity, 2010)

  62. 62

    Mace, G. et al. in Millenium Ecosystem Assessment, Ecosystems and Human Well-being: Biodiversity Synthesis (eds Ceballos, S. L. G., Orians, G. & Pacala, S. ) Ch. 4, 77–122 (World Resources Institute, 2005)

  63. 63

    Cardillo, M., Mace, G. M., Gittleman, J. L. & Purvis, A. Latent extinction risk and the future battlegrounds of mammal conservation. Proc. Natl Acad. Sci. USA 103, 4157–4161 (2006)

    ADS  CAS  PubMed  Google Scholar 

  64. 64

    Sepkoski, J. J. in Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser, O. H. ) 35–51 (Springer, 1996)

    Google Scholar 

  65. 65

    Sheehan, P. M. The Late Ordovician mass extinction. Annu. Rev. Earth Planet. Sci. 29, 331–364 (2001)

    ADS  CAS  Google Scholar 

  66. 66

    Sutcliffe, O. E., Dowdeswell, J. A., Whittington, R. J., Theron, J. N. & Craig, J. Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth's orbit. Geology 28, 967–970 (2000)

    ADS  Google Scholar 

  67. 67

    Sandberg, C. A., Morrow, J. R. & Zlegler, W. in Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, C. & MacLeod, K. G. ) 473–387 (Geological Society of America Special Paper 356, GSA, 2002)

    Google Scholar 

  68. 68

    McGhee, G. R. The Late Devonian Mass Extinction 1–302 (Columbia University Press, 1996)

    Google Scholar 

  69. 69

    Murphy, A. E., Sageman, B. B. & Hollander, D. J. Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: a mechanism for the Late Devonian mass extinction. Geology 28, 427–430 (2000)

    ADS  CAS  Google Scholar 

  70. 70

    Algeo, T. J., Scheckler, S. E. & Maynard, J. B. in Plants Invade the Land: Evolutionary and Environmental Approaches (eds Gensel, P. G. & Edwards, D. ) 213–236 (Columbia University Press, 2000)

    Google Scholar 

  71. 71

    Berner, R. A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc. Natl Acad. Sci. USA 99, 4172–4177 (2002)

    ADS  CAS  PubMed  Google Scholar 

  72. 72

    Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010)

    ADS  CAS  PubMed  Google Scholar 

  73. 73

    Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007)

    ADS  CAS  Google Scholar 

  74. 74

    Hesselbo, S. P., McRoberts, C. A. & Palfy, J. Triassic-Jurassic boundary events: problems, progress, possibilities. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 1–10 (2007)

    Google Scholar 

  75. 75

    Ward, P. D. et al. Sudden productivity collapse associated with the Triassic-Jurassic boundary mass extinction. Science 292, 1148–1151 (2001)

    ADS  CAS  PubMed  Google Scholar 

  76. 76

    Archibald, J. D. et al. Cretaceous extinctions: multiple causes. Science 328, 973 (2010)

    CAS  PubMed  Google Scholar 

  77. 77

    Keller, G. Cretaceous climate, volcanism, impacts, and biotic effects. Cretac. Res. 29, 754–771 (2008)

    Google Scholar 

  78. 78

    Mukhopadhyay, S., Farley, K. A. & Montanari, A. A short duration of the Cretaceous-Tertiary boundary event: evidence from extraterrestrial helium-3. Science 291, 1952–1955 (2010)

    ADS  Google Scholar 

  79. 79

    Royer, D. L. CO2-forced climate thresholds during the Phanerozoic. Geochim. Cosmochim. Acta 70, 5665–5675 (2006)

    ADS  CAS  Google Scholar 

  80. 80

    McCallum, M. L. Amphibian decline or extinction? Current declines dwarf background extinction rate. J. Herpetol. 41, 483–491 (2007)

    Google Scholar 

  81. 81

    Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001)

    ADS  CAS  PubMed  Google Scholar 

  82. 82

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Pimm, S. L. & Raven, P. H. Extinction by numbers. Nature 403, 843–845 (2000)

    ADS  CAS  PubMed  Google Scholar 

  84. 84

    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010)

    ADS  CAS  PubMed  Google Scholar 

  85. 85

    Roelants, K. et al. Global patterns of diversification in the history of modern amphibians. Proc. Natl Acad. Sci. USA 104, 887–892 (2007)

    ADS  CAS  PubMed  Google Scholar 

  86. 86

    Raup, D. M. A kill curve for Phanerozoic marine species. Paleobiology 17, 37–48 (1991)

    CAS  PubMed  Google Scholar 

  87. 87

    Foote, M. Estimating taxonomic durations and preservation probability. Paleobiology 23, 278–300 (1997)

    Google Scholar 

  88. 88

    Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies. Evolution 64, 1816–1824 (2010)

    PubMed  Google Scholar 

  89. 89

    Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat. Int. 217, 10–29 (2010)

    Google Scholar 

  90. 90

    Turvey, S. T. Holocene Extinctions (Oxford University Press, 2009)

    Google Scholar 

  91. 91

    Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009)

    ADS  CAS  PubMed  Google Scholar 

  92. 92

    Surovell, T., Waguespack, N. & Brantingham, P. J. Global archaeological evidence for proboscidean overkill. Proc. Natl Acad. Sci. USA 102, 6231–6236 (2005)

    ADS  CAS  PubMed  Google Scholar 

  93. 93

    Finlayson, C. et al. Late survival of Neanderthals at the southernmost extreme of Europe. Nature 443, 850–853 (2006)

    ADS  CAS  PubMed  Google Scholar 

  94. 94

    Morwood, M. J. et al. Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature 431, 1087–1091 (2004)

    ADS  CAS  PubMed  Google Scholar 

  95. 95

    Orlova, L. A., Vasil’ev, S. K., Kuz’min, Y. V. & Kosintsev, P. A. New data on the time and place of extinction of the woolly rhinoceros Coelodonta antiquitatis Blumenbach, 1799. Dokl. Akad. Nauk 423, 133–135 (2008)

    Google Scholar 

  96. 96

    Reumer, J. W. F. et al. Late Pleistocene survival of the saber-toothed cat Homotherium in Northwestern Europe. J. Vertebr. Paleontol. 23, 260–262 (2003)

    Google Scholar 

  97. 97

    MacPhee, R. D. E. Extinctions in Near Time: Causes, Contexts, and Consequences (Kluwer Academic/Plenum Publishers, 1999)

    Google Scholar 

Download references


S. Beissinger, P. Ehrlich, E. Hadly, A. Hubbe, D. Jablonski, S. Pimm and D. Wake provided constructive comments. Paleobiology Database data were contributed by M. Carrano, J. Alroy, M. Uhen, R. Butler, J. Mueller, L. van den Hoek Ostende, J. Head, E. Fara, D. Croft, W. Clyde, K. Behrensmeyer, J. Hunter, R. Whatley and W. Kiessling. The work was funded in part by NSF grants EAR-0720387 (to A.D.B.) and DEB-0919451 (supporting N.M.). This is University of California Museum of Paleontology Contribution 2024.

Author information




All authors participated in literature review and contributed to discussions that resulted in this paper. A.D.B. planned the project, analysed and interpreted data, and wrote the paper. N.M. and S.T. performed key data analyses and interpretation relating to rate comparisons. G.O.U.W., B.S. and E.L.L. assembled critical data. T.B.Q. and C.M. provided data, analyses and ideas relating to diversity dynamics and rate-magnitude comparisons. J.L.M. helped produce figures and with N.M., S.T., G.O.U.W., B.S., T.B.Q., C.M., K.C.M., B.M. and E.A.F. contributed to finalizing the text.

Corresponding author

Correspondence to Anthony D. Barnosky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barnosky, A., Matzke, N., Tomiya, S. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing