Abstract
Agriculture has been a large part of the ecological success of humans1. A handful of animals, notably the fungus-growing ants, termites and ambrosia beetles2,3,4, have advanced agriculture that involves dispersal and seeding of food propagules, cultivation of the crop and sustainable harvesting5. More primitive examples, which could be called husbandry because they involve fewer adaptations, include marine snails farming intertidal fungi6 and damselfish farming algae7. Recent work has shown that microorganisms are surprisingly like animals in having sophisticated behaviours such as cooperation, communication8,9 and recognition10,11, as well as many kinds of symbiosis12,13,14,15. Here we show that the social amoeba Dictyostelium discoideum has a primitive farming symbiosis that includes dispersal and prudent harvesting of the crop. About one-third of wild-collected clones engage in husbandry of bacteria. Instead of consuming all bacteria in their patch, they stop feeding early and incorporate bacteria into their fruiting bodies. They then carry bacteria during spore dispersal and can seed a new food crop, which is a major advantage if edible bacteria are lacking at the new site. However, if they arrive at sites already containing appropriate bacteria, the costs of early feeding cessation are not compensated for, which may account for the dichotomous nature of this farming symbiosis. The striking convergent evolution between bacterial husbandry in social amoebas and fungus farming in social insects makes sense because multigenerational benefits of farming go to already established kin groups.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Comprehensive comparative genomics reveals over 50 phyla of free-living and pathogenic bacteria are associated with diverse members of the amoebozoa
Scientific Reports Open Access 13 April 2021
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Smith, B. D. (ed.) The Emergence of Agriculture (Scientific American Library, Freeman, 1995)
Aanen, D. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002)
Farrell, B. et al. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55, 2011–2027 (2001)
Mueller, U. G., Schultz, T., Currie, C., Adams, R. & Malloch, D. The origin of the ant-fungus mutualism. Q. Rev. Biol. 76, 169–197 (2001)
Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L. & Schultz, T. R. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 36, 563–595 (2005)
Silliman, B. R. & Newell, S. Y. Fungal farming in a snail. Proc. Natl Acad. Sci. USA 100, 15643–15648 (2003)
Hata, H. & Kato, M. A novel obligate cultivation mutualism between damselfish and Polysiphonia algae. Biol. Lett. 2, 593–596 (2006)
Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183 (2001)
Keller, L. & Surette, M. G. Communication in bacteria: an ecological and evolutionary perspective. Nature Rev. Microbiol. 4, 249–258 (2006)
Mehdiabadi, N. J. et al. Kin preference in a social amoeba. Nature 442, 881–882 (2006)
Ostrowski, E. A., Katoh, M., Shaulsky, G., Queller, D. C. & Strassmann, J. E. Kin discrimination increases with genetic distance in a social amoeba. PLoS Biol. 6, e287 (2008)
Douglas, A. E. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera . Annu. Rev. Entomol. 43, 17–37 (1998)
Moran, N. A., Dunbar, H. E. & Wilcox, J. L. Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola. J. Bacteriol. 187, 4229–4237 (2005)
Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005)
Sears, C. L. A dynamic partnership: celebrating our gut flora. Anaerobe 11, 247–251 (2005)
Raper, K. B. The Dictyostelids 87–177 (Princeton Univ. Press, 1984)
Kessin, R. H. Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity (Cambridge Univ. Press, 2001)
Raper, K. B. Growth and development of Dictyostelium discoideum with different bacterial associates. J. Agric. Res. 55, 289–316 (1937)
Matz, C. & Kjelleberg, S. Off the hook - how bacteria survive protozoan grazing. Trends Microbiol. 13, 302–307 (2005)
Nadson, G. A. Des cultures du Dictyostelium mucoroides Bref. et des cultures pures des amibes en general. Scripta Bot. Horti Univ. Imp. Petropolitanae 15, 188–190 (1899)
Skupienski, F. X. Recherches sur le Cycle Evolutif de Certains Myxomycetes. PhD thesis, l’Universite de Paris. (1920)
Flowers, J. M. et al. Variation, sex, and social cooperation: molecular population genetics of the social amoeba Dictyostelium discoideum . PLoS Genet. 6, e1001013 (2010)
Clark, F. in Soil Biology (eds Burges, A. & Raw, F. ) Ch. 2, 15–49 (Academic, 1967)
Heijnen, C. E., Burgers, S. & Vanveen, J. A. Metabolic activity and population dynamics of rhizobia introduced into unamended and bentonite-amended loamy sand. Appl. Environ. Microbiol. 59, 743–747 (1993)
Horn, E. G. Food competition among the cellular slime molds (Acrasiae). Ecology 52, 475–484 (1971)
Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C. & Thompson, C. R. L. Pleiotropy as a mechanism to stabilize cooperation. Nature 431, 693–696 (2004)
Gilbert, O. M., Foster, K. R., Mehdiabadi, N. J., Strassmann, J. E. & Queller, D. C. High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants. Proc. Natl Acad. Sci. USA 104, 8913–8917 (2007)
Santorelli, L. A. et al. Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature 451, 1107–1110 (2008)
Benabentos, R. et al. Polymorphic members of the lag gene family mediate kin discrimination in Dictyostelium . Curr. Biol. 19, 567–572 (2009)
Fortunato, A., Strassmann, J. E., Santorelli, L. & Queller, D. C. Co-occurrence in nature of different clones of the social amoeba, Dictyostelium discoideum. Mol. Ecol. 12, 1031–1038 (2003)
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001)
Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007)
Acknowledgements
We thank J. Rudgers, G. Saxer Quance, L. Campbell, E. Ostrowski, O. Gilbert, A. Savage, J. Ahern, K. Crawford, S. Chamberlain, S. Read, D. Nguyen, K. Foster, H. Kaplan, D. Hatton and K. Boomsma for discussions and advice. This material is based on work supported by the US National Science Foundation.
Author information
Authors and Affiliations
Contributions
D.A.B. identified the symbiosis, performed the experiments and analysed the data. T.E.D. constructed and analysed the phylogeny. D.A.B., T.E.D., D.C.Q. and J.E.S. designed the experiments, discussed the results and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
The file contains Supplementary Figures 1-4 with legends, Supplementary Tables 1-3 and an additional reference. (PDF 465 kb)
Rights and permissions
About this article
Cite this article
Brock, D., Douglas, T., Queller, D. et al. Primitive agriculture in a social amoeba. Nature 469, 393–396 (2011). https://doi.org/10.1038/nature09668
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature09668
This article is cited by
-
Nanomaterials in agriculture for plant health and food safety: a comprehensive review on the current state of agro-nanoscience
3 Biotech (2023)
-
Nanoengineered particles for sustainable crop production: potentials and challenges
3 Biotech (2023)
-
Comprehensive comparative genomics reveals over 50 phyla of free-living and pathogenic bacteria are associated with diverse members of the amoebozoa
Scientific Reports (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.