Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The challenge of new drug discovery for tuberculosis

Abstract

Tuberculosis (TB) is more prevalent in the world today than at any other time in human history. Mycobacterium tuberculosis, the pathogen responsible for TB, uses diverse strategies to survive in a variety of host lesions and to evade immune surveillance. A key question is how robust are our approaches to discovering new TB drugs, and what measures could be taken to reduce the long and protracted clinical development of new drugs. The emergence of multi-drug-resistant strains of M. tuberculosis makes the discovery of new molecular scaffolds a priority, and the current situation even necessitates the re-engineering and repositioning of some old drug families to achieve effective control. Whatever the strategy used, success will depend largely on our proper understanding of the complex interactions between the pathogen and its human host. In this review, we discuss innovations in TB drug discovery and evolving strategies to bring newer agents more quickly to patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stages of M. tuberculosis infection.
Figure 2: A bull’s-eye representation of the current clinical pipeline for TB.
Figure 3: Screening for mycobacterial respiratory pathway inhibitors.
Figure 4: Remodelling the existing antibacterial drug classes.
Figure 5: Two-dimensional representation of chemical space of the anti-TB drugs.
Figure 6: Representative underexplored and new chemical scaffolds.

Similar content being viewed by others

References

  1. Dye, C. & Williams, B. G. The population dynamics and control of tuberculosis. Science 328, 856–861 (2010)

    Article  ADS  CAS  Google Scholar 

  2. Riley, R. L. Aerial dissemination of pulmonary tuberculosis. Am. Rev. Tuberc. 76, 931–941 (1957)

    CAS  PubMed  Google Scholar 

  3. Barry, C. E., III et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Rev. Microbiol. 7, 845–855 (2009)

    Article  CAS  Google Scholar 

  4. World Health Organization. Multidrug and Extensive Drug Resistant Tuberculosis: 2010 Global Report on Surveillance and Response (World health Organization, 2010)

  5. Gandhi, N. R. et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 375, 1830–1843 (2010)

    Article  Google Scholar 

  6. Mitnick, C. et al. Community-based therapy for multidrug-resistant tuberculosis in Lima, Peru. N. Engl. J. Med. 348, 119–128 (2003)

    Article  Google Scholar 

  7. Ma, Z., Lienhardt, C., McIlleron, H., Nunn, A. J. & Wang, X. Global tuberculosis drug development pipeline: the need and the reality. Lancet 375, 2100–2109 (2010)

    Article  Google Scholar 

  8. World Health Organization. The Global Plan to Stop TB 2011–2015: Transforming the Fight Towards Elimination of Tuberculosis (World Health Organization, 2010)

  9. Niemi, M., Backman, J. T., Fromm, M. F., Neuvonen, P. J. & Kivisto, K. T. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin. Pharmacokinet. 42, 819–850 (2003)

    Article  CAS  Google Scholar 

  10. L’homme, R. F. et al. Clinical experience with the combined use of lopinavir/ritonavir and rifampicin. AIDS 23, 863–865 (2009)

    Article  Google Scholar 

  11. Khachi, H., O’Connell, R., Ladenheim, D. & Orkin, C. Pharmacokinetic interactions between rifabutin and lopinavir/ritonavir in HIV-infected patients with mycobacterial co-infection. J. Antimicrob. Chemother. 64, 871–873 (2009)

    Article  CAS  Google Scholar 

  12. Goodwin, B., Hodgson, E. & Liddle, C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 56, 1329–1339 (1999)

    Article  CAS  Google Scholar 

  13. Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912 (2001)

    Article  CAS  Google Scholar 

  14. Burman, W. J., Gallicano, K. & Peloquin, C. Therapeutic implications of drug interactions in the treatment of human immunodeficiency virus-related tuberculosis. Clin. Infect. Dis. 28, 419–429 (1999)

    Article  CAS  Google Scholar 

  15. Touré, N. O. et al. Tuberculosis and diabetes [in French with English abstract]. Rev. Mal. Respir. 24, 869–875 (2007)

    Article  Google Scholar 

  16. Dooley, K. E. & Chaisson, R. E. Tuberculosis and diabetes mellitus: convergence of two epidemics. Lancet Infect. Dis. 9, 737–746 (2009)

    Article  Google Scholar 

  17. Ruslami, R. et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob. Agents Chemother. 54, 1068–1074 (2010)

    Article  CAS  Google Scholar 

  18. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Rev. Drug Discov. 6, 29–40 (2007)An excellent review on what is ailing antibacterial research and remedial measures to be taken.

    Article  CAS  Google Scholar 

  19. Macielag, M. Chemical Properties of Antibacterial Drugs (45th Interscience Conference for Antimicrobial Agents and Chemotherapy (ICAAC), December 16–19, 2005)

    Google Scholar 

  20. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998)A landmark paper describing the genomic sequence of M. tuberculosis and thereby identifying several new drug targets.

    Article  ADS  CAS  Google Scholar 

  21. Working Group on New TB Drugs The global TB drug pipeline. 〈http://www.newtbdrugs.org/project.php?id=183〉 (2010)

  22. Pethe, K. et al. A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy. Nature Commun. 1, 57 (2010)

    Article  Google Scholar 

  23. Andries, K. et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis . Science 307, 223–227 (2005)Describes the discovery of the novel drug candidate TMC207.

    Article  ADS  CAS  Google Scholar 

  24. Koul, A. et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nature Chem. Biol. 3, 323–324 (2007)

    Article  CAS  Google Scholar 

  25. Makarov, V. et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324, 801–804 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Bald, D. & Koul, A. Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol. Lett. 308, 1–7 (2010)

    Article  CAS  Google Scholar 

  27. Koul, A. et al. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem. 283, 25273–25280 (2008)

    Article  CAS  Google Scholar 

  28. Rao, S. P., Alonso, S., Rand, L., Dick, T. & Pethe, K. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis . Proc. Natl Acad. Sci. USA 105, 11945–11950 (2008)Important research demonstrating the effect of inhibition of the respiratory chain for killing dormant TB bacilli.

    Article  ADS  CAS  Google Scholar 

  29. Boshoff, H. I. & Barry, C. E., III Tuberculosis—metabolism and respiration in the absence of growth. Nature Rev. Microbiol. 3, 70–80 (2005)This review provides an excellent understanding of how tuberculosis adapts and survives during long-term persistence.

    Article  CAS  Google Scholar 

  30. Fischbach, M. A. & Walsh, C. T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Williams, K. N. et al. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob. Agents Chemother. 53, 1314–1319 (2009)

    Article  CAS  Google Scholar 

  32. Fortún, J. et al. Linezolid for the treatment of multidrug-resistant tuberculosis. J. Antimicrob. Chemother. 56, 180–185 (2005)

    Article  Google Scholar 

  33. Conte, J. E., Jr, Golden, J. A., Kipps, J. & Zurlinden, E. Intrapulmonary pharmacokinetics of linezolid. Antimicrob. Agents Chemother. 46, 1475–1480 (2002)

    Article  CAS  Google Scholar 

  34. Singh, R. et al. PA-824 kills nonreplicating Mycobacterium tuberculosis by intracellular NO release. Science 322, 1392–1395 (2008)

    Article  ADS  CAS  Google Scholar 

  35. Manjunatha, U., Boshoff, H. I. & Barry, C. E. The mechanism of action of PA-824: novel insights from transcriptional profiling. Commun. Integr. Biol. 2, 215–218 (2009)

    Article  CAS  Google Scholar 

  36. Chambers, H. F. et al. Can penicillins and other beta-lactam antibiotics be used to treat tuberculosis? Antimicrob. Agents Chemother. 39, 2620–2624 (1995)

    Article  CAS  Google Scholar 

  37. Hugonnet, J. E., Tremblay, L. W., Boshoff, H. I., Barry, C. E., III & Blanchard, J. S. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis . Science 323, 1215–1218 (2009)Renewed interest in β-lactams and their combination with broad-spectrum lactamase inhibitors for TB treatment.

    Article  ADS  CAS  Google Scholar 

  38. Drawz, S. M. & Bonomo, R. A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160–201 (2010)

    Article  CAS  Google Scholar 

  39. Agrawal, D., Udwadia, Z. F., Rodriguez, C. & Mehta, A. Increasing incidence of fluoroquinolone-resistant Mycobacterium tuberculosis in Mumbai, India. Int. J. Tuberc. Lung Dis. 13, 79–83 (2009)

    CAS  PubMed  Google Scholar 

  40. O’Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008)A thorough study of the physicochemical properties of antibacterial compounds and accompanying chemical space.

    Article  Google Scholar 

  41. Ritchie, T. J., Luscombe, C. N. & Macdonald, S. J. Analysis of the calculated physicochemical properties of respiratory drugs: can we design for inhaled drugs yet? J. Chem. Inf. Model. 49, 1025–1032 (2009)

    Article  CAS  Google Scholar 

  42. Hett, E. C. & Rubin, E. J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 72, 126–56 (2008)

    Article  CAS  Google Scholar 

  43. Koul, A., Herget, T., Klebl, B. & Ullrich, A. Interplay between mycobacteria and host signalling pathways. Nature Rev. Microbiol. 2, 189–202 (2004)

    Article  CAS  Google Scholar 

  44. Székely, R. et al. A novel drug discovery concept for tuberculosis: inhibition of bacterial and host cell signalling. Immunol. Lett. 116, 225–231 (2008)

    Article  Google Scholar 

  45. Miller, J. R. et al. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc. Natl Acad. Sci. USA 106, 1737–1742 (2009)

    Article  ADS  CAS  Google Scholar 

  46. Walburger, A. et al. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304, 1800–1804 (2004)

    Article  ADS  CAS  Google Scholar 

  47. Zhou, B. et al. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc. Natl Acad. Sci. USA 107, 4573–4578 (2010)

    Article  ADS  CAS  Google Scholar 

  48. Kumar, D. et al. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis . Cell 140, 731–743 (2010)

    Article  CAS  Google Scholar 

  49. Keating, L. A. et al. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol. Microbiol. 56, 163–174 (2005)

    Article  CAS  Google Scholar 

  50. Andries, K., Gevers, T. & Lounis, N. Bactericidal potencies of new regimens are not predictive for their sterilizing potencies in a murine model of tuberculosis. Antimicrob. Agents Chemother. 54, 4540–4544 (2010)

    Article  CAS  Google Scholar 

  51. Dhar, N. & McKinney, J. D. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc. Natl Acad. Sci. USA 107, 12275–12280 (2010)

    Article  ADS  CAS  Google Scholar 

  52. Ibrahim, M., Truffot-Pernot, C., Andries, K., Jarlier, V. & Veziris, N. Sterilizing activity of R207910 (TMC207)-containing regimens in the murine model of tuberculosis. Am. J. Respir. Crit. Care Med. 180, 553–557 (2009)

    Article  CAS  Google Scholar 

  53. Feldman, W. H., Karlson, A. G. & Hinshaw, H. C. Streptomycin in experimental tuberculosis: the effects in guinea pigs following infection in intravenous inoculation. Am. Rev. Tuberc. 56, 346–359 (1947)

    CAS  PubMed  Google Scholar 

  54. Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009)

    Article  CAS  Google Scholar 

  55. Russell, D. G., Barry, C. E., III & Flynn, J. L. Tuberculosis: what we don’t know can, and does, hurt us. Science 328, 852–856 (2010)

    Article  ADS  CAS  Google Scholar 

  56. Donald, P. R. & Diacon, A. H. The early bactericidal activity of anti-tuberculosis drugs: a literature review. Tuberculosis (Edinb.) 88 (suppl. 1). S75–S83 (2008)

    Article  CAS  Google Scholar 

  57. Rustomjee, R. et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob. Agents Chemother. 52, 2831–2835 (2008)

    Article  CAS  Google Scholar 

  58. Wallis, R. S. et al. Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect. Dis. 10, 68–69 (2010)

    Article  Google Scholar 

  59. Mitchison, D. A. Assessment of new sterilizing drugs for treating pulmonary tuberculosis by culture at 2 months. Am. Rev. Respir. Dis. 147, 1062–1063 (1993)An interesting demonstration of using 2-months culture conversion as a surrogate marker in TB trials.

    Article  CAS  Google Scholar 

  60. Wallis, R. S. et al. Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 375, 1920–1937 (2010)An excellent review on the need for biomarkers and other tools for shortening TB trials.

    Article  CAS  Google Scholar 

  61. Diacon, A. H. et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N. Engl. J. Med. 360, 2397–2405 (2009)

    Article  CAS  Google Scholar 

  62. Rustomjee, R. et al. A Phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 12, 128–138 (2008)

    CAS  PubMed  Google Scholar 

  63. Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466, 973–977 (2010)

    Article  ADS  CAS  Google Scholar 

  64. Spigelman, M., Woosley, R. & Gheuens, J. New initiative speeds tuberculosis drug development: novel drug regimens become possible in years, not decades. Int. J. Tuberc. Lung Dis. 14, 663–664 (2010)

    PubMed  Google Scholar 

  65. Pieters, J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3, 399–407 (2008)

    Article  CAS  Google Scholar 

  66. Dhar, N. & McKinney, J. D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 10, 30–38 (2007)

    Article  CAS  Google Scholar 

  67. Beresford, B. & Sadoff, J. C. Update on research and development pipeline: tuberculosis vaccines. Clin. Infect. Dis. 50 (suppl. 3). S178–S183 (2010)

    Article  Google Scholar 

  68. Shi, L. et al. Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc. Natl Acad. Sci. USA 102, 15629–15634 (2005)

    Article  ADS  CAS  Google Scholar 

  69. Weinstein, E. A. et al. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs. Proc. Natl Acad. Sci. USA 102, 4548–4553 (2005)An interesting demonstration of targeting NADH dehydrogenase for identifying new TB drugs or re-purposing old drug classes.

    Article  ADS  CAS  Google Scholar 

  70. MOE. v. 2009. 10 〈http://www.chemcomp.com〉 (Chemical Computing Group Inc Montreal, Canada) (2010)

  71. SIMCA-P+12. 〈http://www.umetrics.com〉 (Umetrics AB, Umeå, Sweden) (2010)

  72. Hirano, S., Ichikawa, S. & Matsuda, A. Structure–activity relationship of truncated analogs of caprazamycins as potential anti-tuberculosis agents. Bioorg. Med. Chem. 16, 5123–5133 (2008)

    Article  CAS  Google Scholar 

  73. Hennessy, A. et. al. Substituted (Aza)-1 methyl -1H-Quinolin-2-ones as antibacterials. Patent W02010/046388A1. (2010)

  74. Chao, M. C. & Rubin, E. J. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu. Rev. Microbiol. 64, 293–311 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues K. Simmen, N. Austin, V. Sinha, H. Van Vlijmen and M. Macleigh for critical reading and providing valuable scientific input for this manuscript. We would also like to thank B. Challis for reviewing this manuscript, S. Mostmans from the Business Intelligence Group for providing TB pipeline updates, and E. Huybrechts for her help with preparing the figures.

Author information

Authors and Affiliations

Authors

Contributions

A.K. wrote the synopsis, conceptualized different topics within the review, wrote and contributed to all sections of the review; coordinated and discussed the content with other co-authors. E.A. did the principal component analysis work on TB drugs, N.L. contributed to the section on animal models, J.G. did the chemistry part of the review including chemical structures and K.A. contributed to different sections of the review with a major focus on TB clinical development.

Corresponding author

Correspondence to Anil Koul.

Ethics declarations

Competing interests

The authors are employees of Johnson and Johnson and are currently involved in the development of new TB drug TMC207.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koul, A., Arnoult, E., Lounis, N. et al. The challenge of new drug discovery for tuberculosis. Nature 469, 483–490 (2011). https://doi.org/10.1038/nature09657

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09657

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing