Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic-level modelling of the HIV capsid

Abstract

The mature capsids of human immunodeficiency virus type 1 (HIV-1) and other retroviruses are fullerene shells, composed of the viral CA protein, that enclose the viral genome and facilitate its delivery into new host cells1. Retroviral CA proteins contain independently folded amino (N)- and carboxy (C)-terminal domains (NTD and CTD) that are connected by a flexible linker2,3,4. The NTD forms either hexameric or pentameric rings, whereas the CTD forms symmetric homodimers that connect the rings into a hexagonal lattice3,5,6,7,8,9,10,11,12,13. We previously used a disulphide crosslinking strategy to enable isolation and crystallization of soluble HIV-1 CA hexamers11,14. Here we use the same approach to solve the X-ray structure of the HIV-1 CA pentamer at 2.5 Å resolution. Two mutant CA proteins with engineered disulphides at different positions (P17C/T19C and N21C/A22C) converged onto the same quaternary structure, indicating that the disulphide-crosslinked proteins recapitulate the structure of the native pentamer. Assembly of the quasi-equivalent hexamers and pentamers requires remarkably subtle rearrangements in subunit interactions, and appears to be controlled by an electrostatic switch that favours hexamers over pentamers. This study completes the gallery of substructures describing the components of the HIV-1 capsid and enables atomic-level modelling of the complete capsid. Rigid-body rotations around two assembly interfaces appear sufficient to generate the full range of continuously varying lattice curvature in the fullerene cone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the disulphide-stabilized HIV-1 CA pentamer and comparison with the hexamer.
Figure 2: Comparison of the pentamer and hexamer interactions.
Figure 3: Quasi-equivalence in the pentameric and hexameric NTD rings.
Figure 4: Model of the HIV-1 capsid.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The coordinates and structure factors are deposited in Protein Data Bank under accession numbers 3P05 (N21C/A22C-stabilized pentamer) and 3P0A (P17C/T19C-stabilized pentamer). To reflect the limited resolution of the second structure properly, only Cα coordinates are deposited.

References

  1. Ganser-Pornillos, B. K., Yeager, M. & Sundquist, W. I. The structural biology of HIV assembly. Curr. Opin. Struct. Biol. 18, 203–217 (2008)

    Article  CAS  Google Scholar 

  2. Gitti, R. K. et al. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Gamble, T. R. et al. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–853 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Berthet-Colominas, C. et al. Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J. 18, 1124–1136 (1999)

    Article  CAS  Google Scholar 

  5. Worthylake, D. K., Wang, H., Yoo, S., Sundquist, W. I. & Hill, C. P. Structures of the HIV-1 capsid protein dimerization domain at 2.6 Å resolution. Acta Crystallogr. D 55, 85–92 (1999)

    Article  CAS  Google Scholar 

  6. Li, S., Hill, C. P., Sundquist, W. I. & Finch, J. T. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407, 409–413 (2000)

    Article  ADS  CAS  Google Scholar 

  7. Mortuza, G. B. et al. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431, 481–485 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Ganser-Pornillos, B. K., Cheng, A. & Yeager, M. Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131, 70–79 (2007)

    Article  CAS  Google Scholar 

  9. Cardone, G., Purdy, J. G., Cheng, N., Craven, R. C. & Steven, A. C. Visualization of a missing link in retrovirus capsid assembly. Nature 457, 694–698 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Bailey, G. D., Hyun, J. K., Mitra, A. K. & Kingston, R. L. Proton-linked dimerization of a retroviral capsid protein initiates capsid assembly. Structure 17, 737–748 (2009)

    Article  CAS  Google Scholar 

  11. Pornillos, O. et al. X-ray structures of the hexameric building block of the HIV capsid. Cell 137, 1282–1292 (2009)

    Article  Google Scholar 

  12. Byeon, I. J. et al. Structural convergence between cryoEM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139, 780–790 (2009)

    Article  CAS  Google Scholar 

  13. Hyun, J. K., Radjainia, M., Kingston, R. L. & Mitra, A. K. Proton-driven assembly of the Rous sarcoma virus capsid protein results in the formation of icosahedral particles. J. Biol. Chem. 285, 15056–15064 (2010)

    Article  CAS  Google Scholar 

  14. Pornillos, O., Ganser-Pornillos, B. K., Banumathi, S., Hua, Y. & Yeager, M. Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J. Mol. Biol. 401, 985–995 (2010)

    Article  CAS  Google Scholar 

  15. Ganser, B. K., Li, S., Klishko, V. Y., Finch, J. T. & Sundquist, W. I. Assembly and analysis of conical models for the HIV-1 core. Science 283, 80–83 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Jin, Z., Jin, L., Peterson, D. L. & Lawson, C. L. Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26. J. Mol. Biol. 286, 83–93 (1999)

    Article  CAS  Google Scholar 

  17. Heymann, J. B., Butan, C., Winkler, D. C., Craven, R. C. & Steven, A. C. Irregular and semi-regular polyhedral models for Rous sarcoma virus cores. Comput. Math. Methods Med. 9, 197–210 (2008)

    Article  MathSciNet  Google Scholar 

  18. Caspar, D. L. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962)

    Article  CAS  Google Scholar 

  19. Ganser-Pornillos, B. K., von Schwedler, U. K., Stray, K. M., Aiken, C. & Sundquist, W. I. Assembly properties of the human immunodeficiency virus type 1 CA protein. J. Virol. 78, 2545–2552 (2004)

    Article  CAS  Google Scholar 

  20. Ehrlich, L. S., Agresta, B. E. & Carter, C. A. Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro . J. Virol. 66, 4874–4883 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Campbell, S. & Vogt, V. M. Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J. Virol. 69, 6487–6497 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gross, I., Hohenberg, H. & Kräusslich, H. G. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur. J. Biochem. 249, 592–600 (1997)

    Article  CAS  Google Scholar 

  23. Ternois, F., Sticht, J., Duquerroy, S., Kräusslich, H. G. & Rey, F. A. The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nature Struct. Mol. Biol. 12, 678–682 (2005)

    Article  CAS  Google Scholar 

  24. Ivanov, D. et al. Domain-swapped dimerization of the HIV-1 capsid C-terminal domain. Proc. Natl Acad. Sci. USA 104, 4353–4358 (2007)

    Article  ADS  CAS  Google Scholar 

  25. Alcaraz, L. A., del Alamo, M., Barrera, F. N., Mateu, M. G. & Neira, J. L. Flexibility in HIV-1 assembly subunits: solution structure of the monomeric C-terminal domain of the capsid protein. Biophys. J. 93, 1264–1276 (2007)

    Article  ADS  CAS  Google Scholar 

  26. Bartonova, V. et al. Residues in the HIV-1 capsid assembly inhibitor binding site are essential for maintaining the assembly-competent quaternary structure of the capsid protein. J. Biol. Chem. 283, 32024–32033 (2008)

    Article  CAS  Google Scholar 

  27. Wong, H. C., Shin, R. & Krishna, N. R. Solution structure of a double mutant of the carboxy-terminal dimerization domain of the HIV-1 capsid protein. Biochemistry 47, 2289–2297 (2008)

    Article  CAS  Google Scholar 

  28. von Schwedler, U. K., Stray, K. M., Garrus, J. E. & Sundquist, W. I. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77, 5439–5450 (2003)

    Article  CAS  Google Scholar 

  29. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  30. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997)

    Article  CAS  Google Scholar 

  31. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  Google Scholar 

  32. Reddy, V. et al. Effective electron-density map improvement and structure validation on a Linux multi-CPU web cluster: the TB Structural Genomics Consortium Bias Removal Web Service. Acta Crystallogr. D 59, 2200–2210 (2003)

    Article  Google Scholar 

  33. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  34. Kleywegt, G. J. & Jones, T. A. xdlMAPMAN and xdlDATAMAN – programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr. D 52, 826–828 (1996)

    Article  CAS  Google Scholar 

  35. Vaguine, A. A., Richelle, J. & Wodak, S. J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D 55, 191–205 (1999)

    Article  CAS  Google Scholar 

  36. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010)

    Article  CAS  Google Scholar 

  37. Wriggers, W. & Schulten, K. Protein domain movements: detection of rigid domains and visualization of hinges in comparisons of atomic coordinates. Proteins 29, 1–14 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by grants from the US National Institutes of Health to M.Y. (R01-GM066087 and P50-GM082545). X-ray diffraction data were collected at beamlines 22-BM and 22-ID at the Advanced Photon Source, Argonne National Laboratory. Initial crystal screening was performed with the assistance of S. Banumathi through the Collaborative Crystallography Program, Lawrence Berkeley National Laboratory at the Advanced Light Source. We thank J. E. Johnson and D. Borek for crystallographic advice; Y. Hua for assistance with molecular biology experiments; and I. A. Wilson, C. P. Hill and W. I. Sundquist for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed/performed the experiments, analysed the data and wrote the manuscript. O.P. performed the computational aspects of crystallographic structure determination.

Corresponding author

Correspondence to Mark Yeager.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Table 1 and Supplementary Figures 1-5 with legends. (PDF 5445 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pornillos, O., Ganser-Pornillos, B. & Yeager, M. Atomic-level modelling of the HIV capsid. Nature 469, 424–427 (2011). https://doi.org/10.1038/nature09640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09640

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing