Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversing EphB2 depletion rescues cognitive functions in Alzheimer model

This article has been updated


Amyloid-β oligomers may cause cognitive deficits in Alzheimer’s disease by impairing neuronal NMDA-type glutamate receptors, whose function is regulated by the receptor tyrosine kinase EphB2. Here we show that amyloid-β oligomers bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. To determine the pathogenic importance of EphB2 depletions in Alzheimer’s disease and related models, we used lentiviral constructs to reduce or increase neuronal expression of EphB2 in memory centres of the mouse brain. In nontransgenic mice, knockdown of EphB2 mediated by short hairpin RNA reduced NMDA receptor currents and impaired long-term potentiation in the dentate gyrus, which are important for memory formation. Increasing EphB2 expression in the dentate gyrus of human amyloid precursor protein transgenic mice reversed deficits in NMDA receptor-dependent long-term potentiation and memory impairments. Thus, depletion of EphB2 is critical in amyloid-β-induced neuronal dysfunction. Increasing EphB2 levels or function could be beneficial in Alzheimer’s disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Amyloid-β oligomers bind to the fibronectin repeats domain of EphB2 and cause degradation of EphB2 in the proteasome.
Figure 2: Knockdown of EphB2 reduces surface NR1 levels and Fc-ephrin-B2-dependent Fos expression.
Figure 3: Knockdown of EphB2 reduces LTP in dentate gyrus granule cells of nontransgenic mice.
Figure 4: Increasing EphB2 expression rescues synaptic plasticity in hAPP mice.
Figure 5: Increasing EphB2 expression in the dentate gyrus ameliorates learning and memory deficits in hAPP mice.

Change history

  • 16 August 2011

    In Supplementary Figure 11, the legend on the y-axis for panels a and b has been corrected to be 'Relative level' instead of 'ng/ml'.


  1. 1

    Walsh, D. M. & Selkoe, D. J. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44, 181–193 (2004)

    CAS  Article  Google Scholar 

  2. 2

    Shankar, G. M. et al. Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nature Med. 14, 837–842 (2008)

    CAS  Article  Google Scholar 

  3. 3

    Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003)

    CAS  Article  Google Scholar 

  4. 4

    Malenka, R. C. & Bear, M. F. LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004)

    CAS  Article  Google Scholar 

  5. 5

    Ikonomovic, M. D. et al. Distribution of glutamate receptor subunit NMDAR1 in the hippocampus of normal elderly and patients with Alzheimer’s disease. Exp. Neurol. 160, 194–204 (1999)

    CAS  Article  Google Scholar 

  6. 6

    Sze, C., Bi, H., Kleinschmidt-DeMasters, B. K., Filley, C. M. & Martin, L. J. N-Methyl-d-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J. Neurol. Sci. 182, 151–159 (2001)

    CAS  Article  Google Scholar 

  7. 7

    Palop, J. J. et al. Vulnerability of dentate granule cells to disruption of Arc expression in human amyloid precursor protein transgenic mice. J. Neurosci. 25, 9686–9693 (2005)

    CAS  Article  Google Scholar 

  8. 8

    Palop, J. J. et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55, 697–711 (2007)

    CAS  Article  Google Scholar 

  9. 9

    Simon, A. M. et al. Early changes in hippocampal Eph receptors precede the onset of memory decline in mouse models of Alzheimer’s disease. J. Alzheimers Dis. 17, 773–786 (2009)

    CAS  Article  Google Scholar 

  10. 10

    Henderson, J. T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Dalva, M. B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000)

    CAS  Article  Google Scholar 

  12. 12

    Takasu, M. A., Dalva, M. B., Zigmond, R. E. & Greenberg, M. E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Chen, Y., Fu, A. K. & Ip, N. Y. Bidirectional signaling of ErbB and Eph receptors at synapses. Neuron Glia Biol. 4, 211–221 (2008)

    Article  Google Scholar 

  14. 14

    Grunwald, I. C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001)

    CAS  Article  Google Scholar 

  15. 15

    Fleischmann, A. et al. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J. Neurosci. 23, 9116–9122 (2003)

    CAS  Article  Google Scholar 

  16. 16

    Litterst, C. et al. Ligand binding and calcium influx induce distinct ectodomain/γ-secretase-processing pathways of EphB2 receptor. J. Biol. Chem. 282, 16155–16163 (2007)

    CAS  Article  Google Scholar 

  17. 17

    Wakabayashi, K., Honer, W. G. & Masliah, E. Synapse alterations in the hippocampal-entorhinal formation in Alzheimer’s disease with and without Lewy body disease. Brain Res. 667, 24–32 (1994)

    CAS  Article  Google Scholar 

  18. 18

    Scheff, S. W. & Price, D. A. Alzheimer’s disease-related alterations in synaptic density: neocortex and hippocampus. J. Alzheimers Dis. 9, 101–115 (2006)

    Article  Google Scholar 

  19. 19

    Mueller-Steiner, S. et al. Anti-amyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron 51, 703–714 (2006)

    CAS  Article  Google Scholar 

  20. 20

    Sun, B. et al. Imbalance between GABAergic and glutamatergic transmissions impairs adult neurogenesis in an animal model of Alzheimer’s disease. Cell Stem Cell 5, 624–633 (2009)

    CAS  Article  Google Scholar 

  21. 21

    Shemer, I. et al. Non-fibrillar β-amyloid abates spike-timing-dependent synaptic potentiation at excitatory synapses in layer 2/3 of the neocortex by targeting postsynaptic AMPA receptors. Eur. J. Neurosci. 23, 2035–2047 (2006)

    Article  Google Scholar 

  22. 22

    Ashe, K. H. & Zahs, K. R. Probing the biology of Alzheimer’s disease in mice. Neuron 66, 631–645 (2010)

    CAS  Article  Google Scholar 

  23. 23

    Colino, A. & Malenka, R. C. Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro . J. Neurophysiol. 69, 1150–1159 (1993)

    CAS  Article  Google Scholar 

  24. 24

    Harris, J. A. et al. Many neuronal and behavioral impairments in transgenic mouse models of Alzheimer’s disease are independent of caspase cleavage of the amyloid precursor protein. J. Neurosci. 30, 372–381 (2010)

    CAS  Article  Google Scholar 

  25. 25

    Sanchez-Mejia, R. O. et al. Phospholipase A2 reduction ameliorates cognitve deficits in mouse model of Alzheimer’s disease. Nature Neurosci. 11, 1311–1318 (2008)

    CAS  Article  Google Scholar 

  26. 26

    Meilandt, W. J. et al. Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 28, 5007–5017 (2008)

    CAS  Article  Google Scholar 

  27. 27

    Roberson, E. D. et al. Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science 316, 750–754 (2007)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Nguyen, P. V., Abel, T., Kandel, E. R. & Bourtchouladze, R. Strain-dependent differences in LTP and hippocampus-dependent memory in inbred mice. Learn. Mem. 7, 170–179 (2000)

    CAS  Article  Google Scholar 

  29. 29

    Nakajima, R. et al. Comprehensive behavioral phenotyping of calpastatin-knockout mice. Mol. Brain 1, 7 (2008)

    Article  Google Scholar 

  30. 30

    Potter, M. C. et al. Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35, 1734–1742 (2010)

    CAS  Article  Google Scholar 

  31. 31

    Terashima, A. et al. An essential role for PICK1 in NMDA receptor-dependent bidirectional synaptic plasticity. Neuron 57, 872–882 (2008)

    CAS  Article  Google Scholar 

  32. 32

    Snyder, E. M. et al. Regulation of NMDA receptor trafficking by amyloid-β. Nature Neurosci. 8, 1051–1058 (2005)

    CAS  Article  Google Scholar 

  33. 33

    Kurup, P. et al. Aβ-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J. Neurosci. 30, 5948–5957 (2010)

    CAS  Article  Google Scholar 

  34. 34

    Bonifazi, P. et al. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326, 1419–1424 (2009)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Han, J. H. et al. Selective erasure of a fear memory. Science 323, 1492–1496 (2009)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Li, C. Y., Poo, M. M. & Dan, Y. Burst spiking of a single cortical neuron modifies global brain state. Science 324, 643–646 (2009)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Rockenstein, E. M. et al. Levels and alternative splicing of amyloid β protein precursor (APP) transcripts in brains of transgenic mice and humans with Alzheimer’s disease. J. Biol. Chem. 270, 28257–28267 (1995)

    CAS  Article  Google Scholar 

  38. 38

    Mucke, L. et al. High-level neuronal expression of Aβ1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J. Neurosci. 20, 4050–4058 (2000)

    CAS  Article  Google Scholar 

  39. 39

    Koo, E. H. & Squazzo, S. L. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. Biol. Chem. 269, 17386–17389 (1994)

    CAS  PubMed  Google Scholar 

  40. 40

    Walsh, D. M. et al. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo . Nature 416, 535–539 (2002)

    ADS  CAS  Article  Google Scholar 

  41. 41

    Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates. (Academic, 1997)

    Google Scholar 

  42. 42

    Xia, Z., Dudek, H., Miranti, C. K. & Greenberg, M. E. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J. Neurosci. 16, 5425–5436 (1996)

    CAS  Article  Google Scholar 

  43. 43

    Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W. & Strittmatter, S. M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128–1132 (2009)

    ADS  Article  Google Scholar 

  44. 44

    Alfa Cisse, M. et al. M1 and M3 muscarinic receptors control physiological processing of cellular prion by modulating Alzheimer’s disease AM17 phosphorylation and activity. J. Neurosci. 27, 4083–4092 (2007)

    Article  Google Scholar 

  45. 45

    Wu, J., Rush, A., Rowan, M. J. & Anwyl, R. NMDA receptor- and metabotropic glutamate receptor-dependent synaptic plasticity induced by high frequency stimulation in the rat dentate gyrus in vitro . J. Physiol. (Lond.) 533, 745–755 (2001)

    CAS  Article  Google Scholar 

  46. 46

    Raber, J. et al. Hypothalamic-pituitary-adrenal function in Apoe−/− mice: possible role in behavioral and metabolic alterations. J. Neurosci. 20, 2064–2071 (2000)

    CAS  Article  Google Scholar 

  47. 47

    Raber, J., LeFevour, A., Buttini, M. & Mucke, L. Androgens protect against Apolipoprotein E4-induced cognitive deficits. J. Neurosci. 22, 5204–5209 (2002)

    CAS  Article  Google Scholar 

  48. 48

    Dere, E., Huston, J. P. & De Souza Silva, M. A. Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. Brain Res. Protoc. 16, 10–19 (2005)

    Article  Google Scholar 

  49. 49

    Benice, T., Rizk, A., Kohama, S., Pfankuch, T. & Raber, J. Sex-differences in age-related cognitive decline in C57BL/6J mice associated with increased brain microtubule-associated protein 2 and synaptophysin immunoreactivity. Neuroscience 137, 413–423 (2006)

    CAS  Article  Google Scholar 

  50. 50

    Johnson-Wood, K. et al. Amyloid precursor protein processing and Aβ42 deposition in a transgenic mouse model of Alzheimer disease. Proc. Natl Acad. Sci. USA 94, 1550–1555 (1997)

    ADS  CAS  Article  Google Scholar 

Download references


We thank I. Ethell for the plasmid encoding the Flag-tagged EphB2 receptor; D. J. Selkoe and D. Walsh for CHO-7PA2 cells; S. Finkbeiner for the plasmid encoding the NMDA receptor subunit NR1; J. Palop for comments; H. Solanoy, M. Thwin and X. Wang for technical support; G. Howard and S. Ordway for editorial review; J. Carroll for preparation of graphics; and M. Dela Cruz for administrative assistance. The study was supported by NIH grants AG011385, AG022074 and NS041787 to L.M., a fellowship from the McBean Family Foundation to M.C., and the National Center for Research Resources Grant RR18928-01 to the Gladstone Institutes.

Author information




M.C. and L.M. conceptualized the study. M.C., B.H., J.H. and N.D. performed experiments, and all authors participated in designing experiments and in analysing and interpreting data. M.C., B.H. and L.M. wrote the manuscript. L.M. supervised the project.

Corresponding author

Correspondence to Lennart Mucke.

Ethics declarations

Competing interests

L.M. serves on the Scientific Advisory Boards of AgeneBio, Inc., Neuropore Therapies, Inc. and Probiodrug A.G.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-15 with legends, Supplementary Tables 1-2, Supplementary Methods and additional references. This file was replaced on 16 August 2011. (PDF 6074 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cissé, M., Halabisky, B., Harris, J. et al. Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature 469, 47–52 (2011).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing