Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoscale architecture of integrin-based cell adhesions

Abstract

Cell adhesions to the extracellular matrix (ECM) are necessary for morphogenesis, immunity and wound healing1,2. Focal adhesions are multifunctional organelles that mediate cell–ECM adhesion, force transmission, cytoskeletal regulation and signalling1,2,3. Focal adhesions consist of a complex network4 of trans-plasma-membrane integrins and cytoplasmic proteins that form a <200-nm plaque5,6 linking the ECM to the actin cytoskeleton. The complexity of focal adhesion composition and dynamics implicate an intricate molecular machine7,8. However, focal adhesion molecular architecture remains unknown. Here we used three-dimensional super-resolution fluorescence microscopy (interferometric photoactivated localization microscopy)9 to map nanoscale protein organization in focal adhesions. Our results reveal that integrins and actin are vertically separated by a 40-nm focal adhesion core region consisting of multiple protein-specific strata: a membrane-apposed integrin signalling layer containing integrin cytoplasmic tails, focal adhesion kinase and paxillin; an intermediate force-transduction layer containing talin and vinculin; and an uppermost actin-regulatory layer containing zyxin, vasodilator-stimulated phosphoprotein and α-actinin. By localizing amino- and carboxy-terminally tagged talins, we reveal talin’s polarized orientation, indicative of a role in organizing the focal adhesion strata. The composite multilaminar protein architecture provides a molecular blueprint for understanding focal adhesion functions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: iPALM imaging of a plasma membrane marker, integrin α v and actin.
Figure 2: Protein stratification of the focal adhesion core.
Figure 3: Talin orientation in focal adhesions.
Figure 4: Nanoscale architecture of focal adhesions.

References

  1. Burridge, K. & Chrzanowska-Wodnicka, M. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996)

    Article  CAS  Google Scholar 

  2. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix-cytoskeleton. Nature Rev. Mol. Cell Biol. 2, 793–805 (2001)

    Article  CAS  Google Scholar 

  3. Bershadsky, A. D., Balaban, N. Q. & Geiger, B. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19, 677–695 (2003)

    Article  CAS  Google Scholar 

  4. Zaidel-Bar, R. et al. Functional atlas of the integrin adhesome. Nature Cell Biol. 9, 858–867 (2007)

    Article  CAS  Google Scholar 

  5. Franz, C. M. & Muller, D. J. Analyzing focal adhesion structure by atomic force microscopy. J. Cell Sci. 118, 5315–5323 (2005)

    Article  CAS  Google Scholar 

  6. Chen, W. T. & Singer, S. J. Immunoelectron microscopic studies of the sites of cell-substratum and cell-cell contacts in cultured fibroblasts. J. Cell Biol. 95, 205–222 (1982)

    Article  CAS  Google Scholar 

  7. Wang, Y. L. Flux at focal adhesions: slippage clutch, mechanical gauge, or signal depot. Sci. STKE 2007, pe10 (2007)

    PubMed  Google Scholar 

  8. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996)

    Article  CAS  Google Scholar 

  9. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl Acad. Sci. USA 106, 3125–3130 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Palade, G. E. & Porter, K. R. Studies on the endoplasmic reticulum. I. Its identification in cells in situ . J. Exp. Med. 100, 641–656 (1954)

    Article  CAS  Google Scholar 

  11. Ledbetter, M. C. & Porter, K. R. A “microtubule” in plant cell fine structure. J. Cell Biol. 19, 239–250 (1963)

    Article  CAS  Google Scholar 

  12. Patterson, G. H. et al. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133, 1055–1067 (2008)

    Article  CAS  Google Scholar 

  13. Liu, J., Kaksonen, M., Drubin, D. G. & Oster, G. Endocytic vesicle scission by lipid phase boundary forces. Proc. Natl Acad. Sci. USA 103, 10277–10282 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Keren, K. et al. Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Pollard, T. D. & Berro, J. Mathematical models and simulations of cellular processes based on actin filaments. J. Biol. Chem. 284, 5433–5437 (2009)

    Article  CAS  Google Scholar 

  16. Shroff, H. et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl Acad. Sci. USA 104, 20308–20313 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Hell, S. W., Schmidt, R. & Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photon. 3, 381–387 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    Article  ADS  CAS  Google Scholar 

  19. Wiedenmann, J. et al. a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl Acad. Sci. USA 101, 15905–15910 (2004)

    Article  ADS  CAS  Google Scholar 

  20. McKinney, S. A. et al. A bright and photostable photoconvertible fluorescent protein. Nature Methods 6, 131–133 (2009)

    Article  CAS  Google Scholar 

  21. Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nature Rev. Mol. Cell Biol. 6, 56–68 (2005)

    Article  CAS  Google Scholar 

  22. Brown, M. C. & Turner, C. E. Paxillin: adapting to change. Physiol. Rev. 84, 1315–1339 (2004)

    Article  CAS  Google Scholar 

  23. Galbraith, C. G., Yamada, K. M. & Sheetz, M. P. The relationship between force and focal complex development. J. Cell Biol. 159, 695–705 (2002)

    Article  CAS  Google Scholar 

  24. Yoshigi, M. et al. Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement. J. Cell Biol. 171, 209–215 (2005)

    Article  CAS  Google Scholar 

  25. Otey, C. A. & Carpen, O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil. Cytoskeleton 58, 104–111 (2004)

    Article  CAS  Google Scholar 

  26. Critchley, D. R. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 38, 235–254 (2009)

    Article  CAS  Google Scholar 

  27. Hu, K. et al. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007)

    Article  ADS  CAS  Google Scholar 

  28. Brown, C. M. et al. Probing the integrin-actin linkage using high-resolution protein velocity mapping. J. Cell Sci. 119, 5204–5214 (2006)

    Article  CAS  Google Scholar 

  29. Jiang, G. et al. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003)

    Article  ADS  CAS  Google Scholar 

  30. del Rio, A. et al. Stretching single talin rod molecules activates vinculin binding. Science 323, 638–641 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Dulkeith, E. et al. Plasmon emission in photoexcited gold nanoparticles. Phys. Rev. B 70, 205424 (2004)

    Article  ADS  Google Scholar 

  32. Press, W. H., Flannery, P. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes (Cambridge Univ. Press, 1986)

    MATH  Google Scholar 

  33. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002)

    Article  CAS  Google Scholar 

  34. Aubin, J. E. Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27, 36–43 (1979)

    Article  CAS  Google Scholar 

  35. Zamir, E. et al. Molecular diversity of cell-matrix adhesions. J. Cell Sci. 112, 1655–1669 (1999)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Lippincott-Schwartz, G. Patterson and M. Parsons for sharing DNA; S. Xie for help with automation software; K. Jaqaman for MATLAB code; and HHMI Janelia Farm Scientific Computing and NIH Helix systems for computing resources. Funding: Division of Intramural Research, NHLBI (P.K., A.M.P. and C.M.W.); Howard Hughes Medical Institute (G.S. and H.F.H.).

Author information

Authors and Affiliations

Authors

Contributions

P.K. and G.S. collected data and performed data analyses. G.S. and H.F.H. designed and built the instrument. A.M.P. performed immunoprecipitation and western blot experiments. E.B.R. and M.W.D. created expression constructs. P.K., C.M.W., G.S., H.F.H., M.W.D. and A.M.P. wrote the manuscript. P.K. and G.S. contributed equally to the study. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Michael W. Davidson, Harald F. Hess or Clare M. Waterman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-22 with legends, Supplementary Tables 1-4 and, Supplementary Notes 1-6 and additional references. (PDF 4167 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanchanawong, P., Shtengel, G., Pasapera, A. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010). https://doi.org/10.1038/nature09621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09621

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing