The myeloid cells of the central nervous system parenchyma

Article metrics


A microglial cell is both a glial cell of the central nervous system and a mononuclear phagocyte, which belongs to the haematopoietic system and is involved in inflammatory and immune responses. As such, microglia face a challenging task. The neurons of the central nervous system cannot divide and be replenished, and therefore need to be protected against pathogens, which is a key role of the immune system, but without collateral damage. In addition, after physical injury, neural cells need restorative support, which is provided by inflammatory responses. Excessive or chronic inflammatory responses can, however, be harmful. How microglia balance these demands, and how their behaviour can be modified to ameliorate disorders of the central nervous system, is becoming clear.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: How microglia are related to haematopoietic cells and CNS cells.
Figure 2: Microglial precursor cells approach the CNS during embryonic development.
Figure 3: Microglia colonize the CNS during embryonic development.
Figure 4: Neuronal inhibitory influences on parenchymal microglia.


  1. 1

    Mazzarello, P. The impossible interview with the man of the hidden biological structures. J. Hist. Neurosci. 15, 318–325 (2006).

  2. 2

    Golgi, C. On the structure of nerve cells. Boll. Soc. Chir. Med. Pavia 13, 3–16 (1898); transl. Geller Lipsky, N. J. Microsc. 155, 3–7 (1989).

  3. 3

    Lopez-Munoz, F., Boya, J. & Alamo, C. Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res. Bull. 70, 391–405 (2006).

  4. 4

    Gill, A. S. & Binder, D. K. Wilder Penfield, Pío del Río-Hortega, and the discovery of oligodendroglia. Neurosurgery 60, 940–948 (2007).

  5. 5

    del Río-Hortega, P. in Cytology and Cellular Pathology of the Nervous System (ed. Penfield, W.) 481–534 (Hoeber, 1932).

  6. 6

    Nissl, F. Ueber einige Beziehungen zwischen Nervenzellerkrankungen und gliosen Erscheinungen bei verscheidenen Pschosen. Arch. Psychiatr. 32, 1–21 (1899).

  7. 7

    Geissmann, F., Gordon, S., Hume, D. A., Mowat, A. M. & Randolph, G. J. Unravelling mononuclear phagocyte heterogeneity. Nature Rev. Immunol. 10, 453–460 (2010). Few review articles are as informative as this lively discourse among experts.

  8. 8

    Chan, W. Y., Kohsaka, S. & Rezaie, P. The origin and cell lineage of microglia: new concepts. Brain Res. Rev. 53, 344–354 (2007).

  9. 9

    Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

  10. 10

    Fedoroff, S., Zhai, R. & Novak, J. P. Microglia and astroglia have a common progenitor cell. J. Neurosci. Res. 50, 477–486 (1997).

  11. 11

    Fedoroff, S. & Hao, C. Origin of microglia and their regulation by astroglia. Adv. Exp. Med. Biol. 296, 135–142 (1991).

  12. 12

    McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996). This is regarded as the paper that established microglia as haematopoietic cells.

  13. 13

    Lichanska, A. M. et al. Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood 94, 127–138 (1999).

  14. 14

    Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macropages. Science doi:10.1126/science.1194637 (2010).

  15. 15

    De Groot, C. J., Huppes, W., Sminia, T., Kraal, G. & Dijkstra, C. D. Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 6, 301–309 (1992).

  16. 16

    Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

  17. 17

    Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

  18. 18

    El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Med. 13, 432–438 (2007). This study provided a potent demonstration of the differential capacities of microglia and monocyte-derived macrophages for responding to amyloid-β deposition.

  19. 19

    El Khoury, J. & Luster, A. D. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol. Sci. 29, 626–632 (2008).

  20. 20

    Zhu, B. et al. CD11b+Ly-6Chi suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 179, 5228–5237 (2007).

  21. 21

    Yong, V. W. & Rivest, S. Taking advantage of the systemic immune system to cure brain diseases. Neuron 64, 55–60 (2009).

  22. 22

    Tambuyzer, B. R., Ponsaerts, P. & Nouwen, E. J. Microglia: gatekeepers of central nervous system immunology. J. Leukoc. Biol. 85, 352–370 (2009).

  23. 23

    Sminia, T., De Groot, C. J., Dijkstra, C. D., Koetsier, J. C. & Polman, C. H. Macrophages in the central nervous system of the rat. Immunobiology 174, 43–50 (1987).

  24. 24

    Man, S., Ubogu, E. E. & Ransohoff, R. M. Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol. 17, 243–250 (2007).

  25. 25

    Frohman, E. M. & Kerr, D. Is neuromyelitis optica distinct from multiple sclerosis? Something for 'lumpers' and 'splitters'. Arch. Neurol. 64, 903–905 (2007).

  26. 26

    Streit, W. J. Microglia and macrophages in the developing CNS. Neurotoxicology 22, 619–624 (2001).

  27. 27

    Parnaik, R., Raff, M. C. & Scholes, J. Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr. Biol. 10, 857–860 (2000).

  28. 28

    Caldero, J., Brunet, N., Ciutat, D., Hereu, M. & Esquerda, J. E. Development of microglia in the chick embryo spinal cord: implications in the regulation of motoneuronal survival and death. J. Neurosci. Res. 87, 2447–2466 (2009).

  29. 29

    Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). This paper extends the developmental role of microglia to include synaptic pruning.

  30. 30

    Ashwell, K. The distribution of microglia and cell death in the fetal rat forebrain. Brain Res. Dev. Brain Res. 58, 1–12 (1991).

  31. 31

    Ashwell, K. Microglia and cell death in the developing mouse cerebellum. Brain Res. Dev. Brain Res. 55, 219–230 (1990).

  32. 32

    Perry, V. H., Hume, D. A. & Gordon, S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313–326 (1985). This pioneering study used myeloid markers to map the distribution of microglia in the rat CNS and establish their spatiotemporal relationship with apoptotic cells.

  33. 33

    Wu, H. H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nature Neurosci. 12, 1534–1541 (2009).

  34. 34

    Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).

  35. 35

    Wakselman, S. et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143 (2008).

  36. 36

    Frade, J. M. & Barde, Y. A. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20, 35–41 (1998). This paper showed that microglia help to regulate cell death in the CNS during development, as well as engulfing the cell corpses.

  37. 37

    Bianchin, M. M. et al. Nasu–Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy — PLOSL): a dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cell. Mol. Neurobiol. 24, 1–24 (2004).

  38. 38

    Tanaka, J. Nasu–Hakola disease: a review of its leukoencephalopathic and membranolipodystrophic features. Neuropathology 20, S25–S29 (2000).

  39. 39

    Klunemann, H. H. et al. The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology 64, 1502–1507 (2005).

  40. 40

    Neumann, H. & Takahashi, K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J. Neuroimmunol. 184, 92–99 (2007).

  41. 41

    Chouery, E. et al. Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum. Mutat. 29, E194–E204 (2008). This paper showed that perturbed microglial-cell physiology, without other types of cellular pathology, can cause neurodegeneration.

  42. 42

    Stefano, L. et al. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J. Neurochem. 110, 284–294 (2009).

  43. 43

    Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).

  44. 44

    Chen, S. K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

  45. 45

    Hyman, S. E. A bone to pick with compulsive behavior. Cell 141, 752–754 (2010).

  46. 46

    Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

  47. 47

    Reed-Geaghan, E. G., Savage, J. C., Hise, A. G. & Landreth, G. E. CD14 and Toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J. Neurosci. 29, 11982–11992 (2009).

  48. 48

    Lee, C. Y. & Landreth, G. E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117, 949–960 (2010).

  49. 49

    Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo . Nature Neurosci. 8, 752–758 (2005).

  50. 50

    Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo . Science 308, 1314–1318 (2005). References 49 and 50 established the concept of 'surveillant' microglia.

  51. 51

    Kim, J. V. et al. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J. Immunol. Methods 352, 89–100 (2010).

  52. 52

    Davalos, D. et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J. Neurosci. Methods 169, 1–7 (2008).

  53. 53

    Flugel, A., Bradl, M., Kreutzberg, G. W. & Graeber, M. B. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J. Neurosci. Res. 66, 74–82 (2001).

  54. 54

    Ransohoff, R. M. Microgliosis: the questions shape the answers. Nature Neurosci. 10, 1507–1509 (2007).

  55. 55

    Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neurosci. 10, 1538–1543 (2007). This study used parabiosis to uncover the artefacts that are inherent in using radiation bone-marrow chimaerism to study microglial-cell physiology.

  56. 56

    Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neurosci. 10, 1544–1553 (2007).

  57. 57

    Graeber, M. B. et al. The microglia/macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res. 813, 241–253 (1998).

  58. 58

    Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neurosci. 9, 1512–1519 (2006).

  59. 59

    Orr, A. G., Orr, A. L., Li, X. J., Gross, R. E. & Traynelis, S. F. Adenosine A2A receptor mediates microglial process retraction. Nature Neurosci. 12, 872–878 (2009).

  60. 60

    Perry, V. H., Nicoll, J. A. & Holmes, C. Microglia in neurodegenerative disease. Nature Rev. Neurol. 6, 193–201 (2010).

  61. 61

    Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).

  62. 62

    Shpargel, K. B. et al. Preconditioning paradigms and pathways in the brain. Cleve. Clin. J. Med. 75 (Suppl. 2), S77–S82 (2008).

  63. 63

    Mirrione, M. M. et al. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol. Dis. 39, 85–97 (2010).

  64. 64

    Nakajima, K. & Kohsaka, S. Microglia activation and their significance in the central nervous system. J. Biochem. 130, 169–175 (2001).

  65. 65

    Nakamura, Y. Regulating factors for microglia activation. Biol. Pharm. Bull. 25, 945–953 (2002).

  66. 66

    Ponomarev, E. D., Shriver, L. P., Maresz, K. & Dittel, B. N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 81, 374–389 (2005).

  67. 67

    Zielasek, J. & Hartung, H.-P. Molecular mechanisms of microglia activation. Adv. Neuroimmunol. 6, 191–222 (1996).

  68. 68

    Schmid, C. D. et al. Differential gene expression in LPS/IFNγ activated microglia and macrophages: in vitro versus in vivo . J. Neurochem. 109 (suppl. 1), 117–125 (2009).

  69. 69

    Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci. 10, 1387–1394 (2007).

  70. 70

    Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

  71. 71

    Barclay, A. N., Wright, G. J., Brooke, G. & Brown, M. H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 23, 285–290 (2002).

  72. 72

    Junker, A. et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132, 3342–3352 (2009).

  73. 73

    Cardona, A. & Ransohoff, R. M. Chemokine receptor CX3CR1. UCSD–Nature Molecule Pages doi:10.1038/mp.a000633.01 (2009).

  74. 74

    Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).

  75. 75

    Ransohoff, R. M. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31, 711–721 (2009).

  76. 76

    Hundhausen, C. et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell–cell adhesion. Blood 102, 1186–1195 (2003).

  77. 77

    Gahmberg, C. G., Tian, L., Ning, L. & Nyman-Huttunen, H. ICAM-5 — a novel two-facetted adhesion molecule in the mammalian brain. Immunol. Lett. 117, 131–135 (2008).

  78. 78

    Farber, K. & Kettenmann, H. Purinergic signaling and microglia. Pflügers Arch. 452, 615–621 (2006).

  79. 79

    Farber, K. & Kettenmann, H. Physiology of microglial cells. Brain Res. Brain Res. Rev. 48, 133–143 (2005).

  80. 80

    Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nature Neurosci. 9, 917–924 (2006).

  81. 81

    Huang, D. et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J. 20, 896–905 (2006).

  82. 82

    Fuhrmann, M. et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nature Neurosci. 13, 411–413 (2010).

  83. 83

    Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

  84. 84

    Bechmann, I., Galea. I. & Perry, V. H. What is the blood–brain barrier (not)? Trends Immunol. 28, 5–11 (2007).

  85. 85

    Adams, R. A. et al. The fibrin-derived γ377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J. Exp. Med. 204, 571–582 (2007). This study identified a major component of plasma that specifically activates microglia.

  86. 86

    Ryu, J. K., Davalos, D. & Akassoglou, K. Fibrinogen signal transduction in the nervous system. J. Thromb. Haemost. 7 (suppl. 1), 151–154 (2009).

  87. 87

    Chang, T. T. et al. Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. Eur. J. Immunol. 33, 2022–2032 (2003).

  88. 88

    Kawakami, N. et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).

  89. 89

    Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo . Science 239, 290–292 (1988). This study showed that perivascular macrophages are crucial for restimulating antigen-specific T cells in the CNS.

  90. 90

    Becher, B., Bechmann, I. & Greter, M. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J. Mol. Med. 84, 532–543 (2006).

  91. 91

    McMahon, E. J., Bailey, S. L. & Miller, S. D. CNS dendritic cells: critical participants in CNS inflammation? Neurochem. Int. 49, 195–203 (2006).

  92. 92

    Bailey, S. L., Carpentier, P. A., McMahon, E. J., Begolka, W. S. & Miller, S. D. Innate and adaptive immune responses of the central nervous system. Crit. Rev. Immunol. 26, 149–188 (2006).

  93. 93

    Kivisakk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

  94. 94

    Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009). This paper vividly dissected the interactions of antigen-specific T cells with perivascular and meningeal macrophages during extravasation of the T cells into the subarachnoid space and entry to the CNS parenchyma.

  95. 95

    Aloisi, F., De, S. R., Columba-Cabezas, S., Penna, G. & Adorini, L. Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte–macrophage colony-stimulating factor and interaction with TH1 cells. J. Immunol. 164, 1705–1712 (2000).

  96. 96

    McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med. 11, 335–339 (2005).

  97. 97

    Heppner, F. L., Greter, M., Marino, D., Falsig, J. & Raivich, G. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Med. 11, 146–152 (2005).

  98. 98

    Kaufmann, M. H. The Atlas of Mouse Development (Elsevier, 1992).

  99. 99

    Chitnis, T. et al. Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am. J. Pathol. 170, 1695–1712 (2007).

  100. 100

    Piccio, L. et al. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol. 37, 1290–1301 (2007).

  101. 101

    Takahashi, K., Rochford, C. D. & Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657 (2005).

  102. 102

    Mott, R. T. et al. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46, 369–379 (2004).

  103. 103

    Berangere, R. D. & Przedborski, S. Fractalkine: moving from chemotaxis to neuroprotection. Nature Neurosci. 9, 859–861 (2006).

  104. 104

    Vitkovic, L., Maeda, S. & Sternberg, E. Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation 9, 295–312 (2001).

  105. 105

    Qian, L. et al. Potent anti-inflammatory and neuroprotective effects of TGF-β1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J. Immunol. 181, 660–668 (2008).

  106. 106

    Farber, K., Pannasch, U. & Kettenmann, H. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell. Neurosci. 29, 128–138 (2005).

  107. 107

    Neumann, H. & Wekerle, H. Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J. Neuropathol. Exp. Neurol. 57, 1–9 (1998).

Download references


Work in our laboratories was supported by research grants from the US National Institutes of Health/National Institute of Neurological Diseases and Stroke (to R.M.R.), by research grants and fellowships from the US National MS Society (to R.M.R. and A.E.C.) and by the Williams Family Foundation for MS Research (to R.M.R.).

Author information

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ransohoff, R., Cardona, A. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010) doi:10.1038/nature09615

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.