Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The myeloid cells of the central nervous system parenchyma


A microglial cell is both a glial cell of the central nervous system and a mononuclear phagocyte, which belongs to the haematopoietic system and is involved in inflammatory and immune responses. As such, microglia face a challenging task. The neurons of the central nervous system cannot divide and be replenished, and therefore need to be protected against pathogens, which is a key role of the immune system, but without collateral damage. In addition, after physical injury, neural cells need restorative support, which is provided by inflammatory responses. Excessive or chronic inflammatory responses can, however, be harmful. How microglia balance these demands, and how their behaviour can be modified to ameliorate disorders of the central nervous system, is becoming clear.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: How microglia are related to haematopoietic cells and CNS cells.
Figure 2: Microglial precursor cells approach the CNS during embryonic development.
Figure 3: Microglia colonize the CNS during embryonic development.
Figure 4: Neuronal inhibitory influences on parenchymal microglia.


  1. 1

    Mazzarello, P. The impossible interview with the man of the hidden biological structures. J. Hist. Neurosci. 15, 318–325 (2006).

    Google Scholar 

  2. 2

    Golgi, C. On the structure of nerve cells. Boll. Soc. Chir. Med. Pavia 13, 3–16 (1898); transl. Geller Lipsky, N. J. Microsc. 155, 3–7 (1989).

    Google Scholar 

  3. 3

    Lopez-Munoz, F., Boya, J. & Alamo, C. Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res. Bull. 70, 391–405 (2006).

    PubMed  Google Scholar 

  4. 4

    Gill, A. S. & Binder, D. K. Wilder Penfield, Pío del Río-Hortega, and the discovery of oligodendroglia. Neurosurgery 60, 940–948 (2007).

    PubMed  Google Scholar 

  5. 5

    del Río-Hortega, P. in Cytology and Cellular Pathology of the Nervous System (ed. Penfield, W.) 481–534 (Hoeber, 1932).

    Google Scholar 

  6. 6

    Nissl, F. Ueber einige Beziehungen zwischen Nervenzellerkrankungen und gliosen Erscheinungen bei verscheidenen Pschosen. Arch. Psychiatr. 32, 1–21 (1899).

    Google Scholar 

  7. 7

    Geissmann, F., Gordon, S., Hume, D. A., Mowat, A. M. & Randolph, G. J. Unravelling mononuclear phagocyte heterogeneity. Nature Rev. Immunol. 10, 453–460 (2010). Few review articles are as informative as this lively discourse among experts.

    CAS  Google Scholar 

  8. 8

    Chan, W. Y., Kohsaka, S. & Rezaie, P. The origin and cell lineage of microglia: new concepts. Brain Res. Rev. 53, 344–354 (2007).

    CAS  PubMed  Google Scholar 

  9. 9

    Galea, I., Bechmann, I. & Perry, V. H. What is immune privilege (not)? Trends Immunol. 28, 12–18 (2007).

    CAS  PubMed  Google Scholar 

  10. 10

    Fedoroff, S., Zhai, R. & Novak, J. P. Microglia and astroglia have a common progenitor cell. J. Neurosci. Res. 50, 477–486 (1997).

    CAS  PubMed  Google Scholar 

  11. 11

    Fedoroff, S. & Hao, C. Origin of microglia and their regulation by astroglia. Adv. Exp. Med. Biol. 296, 135–142 (1991).

    CAS  PubMed  Google Scholar 

  12. 12

    McKercher, S. R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996). This is regarded as the paper that established microglia as haematopoietic cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Lichanska, A. M. et al. Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood 94, 127–138 (1999).

    CAS  PubMed  Google Scholar 

  14. 14

    Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macropages. Science doi:10.1126/science.1194637 (2010).

  15. 15

    De Groot, C. J., Huppes, W., Sminia, T., Kraal, G. & Dijkstra, C. D. Determination of the origin and nature of brain macrophages and microglial cells in mouse central nervous system, using non-radioactive in situ hybridization and immunoperoxidase techniques. Glia 6, 301–309 (1992).

    CAS  PubMed  Google Scholar 

  16. 16

    Ransohoff, R. M. & Perry, V. H. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol. 27, 119–145 (2009).

    CAS  PubMed  Google Scholar 

  17. 17

    Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    CAS  Google Scholar 

  18. 18

    El Khoury, J. et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nature Med. 13, 432–438 (2007). This study provided a potent demonstration of the differential capacities of microglia and monocyte-derived macrophages for responding to amyloid-β deposition.

    CAS  PubMed  Google Scholar 

  19. 19

    El Khoury, J. & Luster, A. D. Mechanisms of microglia accumulation in Alzheimer's disease: therapeutic implications. Trends Pharmacol. Sci. 29, 626–632 (2008).

    CAS  PubMed  Google Scholar 

  20. 20

    Zhu, B. et al. CD11b+Ly-6Chi suppressive monocytes in experimental autoimmune encephalomyelitis. J. Immunol. 179, 5228–5237 (2007).

    CAS  PubMed  Google Scholar 

  21. 21

    Yong, V. W. & Rivest, S. Taking advantage of the systemic immune system to cure brain diseases. Neuron 64, 55–60 (2009).

    CAS  PubMed  Google Scholar 

  22. 22

    Tambuyzer, B. R., Ponsaerts, P. & Nouwen, E. J. Microglia: gatekeepers of central nervous system immunology. J. Leukoc. Biol. 85, 352–370 (2009).

    CAS  PubMed  Google Scholar 

  23. 23

    Sminia, T., De Groot, C. J., Dijkstra, C. D., Koetsier, J. C. & Polman, C. H. Macrophages in the central nervous system of the rat. Immunobiology 174, 43–50 (1987).

    CAS  PubMed  Google Scholar 

  24. 24

    Man, S., Ubogu, E. E. & Ransohoff, R. M. Inflammatory cell migration into the central nervous system: a few new twists on an old tale. Brain Pathol. 17, 243–250 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Frohman, E. M. & Kerr, D. Is neuromyelitis optica distinct from multiple sclerosis? Something for 'lumpers' and 'splitters'. Arch. Neurol. 64, 903–905 (2007).

    PubMed  Google Scholar 

  26. 26

    Streit, W. J. Microglia and macrophages in the developing CNS. Neurotoxicology 22, 619–624 (2001).

    CAS  PubMed  Google Scholar 

  27. 27

    Parnaik, R., Raff, M. C. & Scholes, J. Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr. Biol. 10, 857–860 (2000).

    CAS  PubMed  Google Scholar 

  28. 28

    Caldero, J., Brunet, N., Ciutat, D., Hereu, M. & Esquerda, J. E. Development of microglia in the chick embryo spinal cord: implications in the regulation of motoneuronal survival and death. J. Neurosci. Res. 87, 2447–2466 (2009).

    CAS  PubMed  Google Scholar 

  29. 29

    Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007). This paper extends the developmental role of microglia to include synaptic pruning.

    CAS  Google Scholar 

  30. 30

    Ashwell, K. The distribution of microglia and cell death in the fetal rat forebrain. Brain Res. Dev. Brain Res. 58, 1–12 (1991).

    CAS  PubMed  Google Scholar 

  31. 31

    Ashwell, K. Microglia and cell death in the developing mouse cerebellum. Brain Res. Dev. Brain Res. 55, 219–230 (1990).

    CAS  PubMed  Google Scholar 

  32. 32

    Perry, V. H., Hume, D. A. & Gordon, S. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15, 313–326 (1985). This pioneering study used myeloid markers to map the distribution of microglia in the rat CNS and establish their spatiotemporal relationship with apoptotic cells.

    CAS  PubMed  Google Scholar 

  33. 33

    Wu, H. H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nature Neurosci. 12, 1534–1541 (2009).

    CAS  Google Scholar 

  34. 34

    Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).

    CAS  Google Scholar 

  35. 35

    Wakselman, S. et al. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J. Neurosci. 28, 8138–8143 (2008).

    CAS  PubMed  Google Scholar 

  36. 36

    Frade, J. M. & Barde, Y. A. Microglia-derived nerve growth factor causes cell death in the developing retina. Neuron 20, 35–41 (1998). This paper showed that microglia help to regulate cell death in the CNS during development, as well as engulfing the cell corpses.

    CAS  PubMed  Google Scholar 

  37. 37

    Bianchin, M. M. et al. Nasu–Hakola disease (polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy — PLOSL): a dementia associated with bone cystic lesions. From clinical to genetic and molecular aspects. Cell. Mol. Neurobiol. 24, 1–24 (2004).

    CAS  PubMed  Google Scholar 

  38. 38

    Tanaka, J. Nasu–Hakola disease: a review of its leukoencephalopathic and membranolipodystrophic features. Neuropathology 20, S25–S29 (2000).

    PubMed  Google Scholar 

  39. 39

    Klunemann, H. H. et al. The genetic causes of basal ganglia calcification, dementia, and bone cysts: DAP12 and TREM2. Neurology 64, 1502–1507 (2005).

    CAS  PubMed  Google Scholar 

  40. 40

    Neumann, H. & Takahashi, K. Essential role of the microglial triggering receptor expressed on myeloid cells-2 (TREM2) for central nervous tissue immune homeostasis. J. Neuroimmunol. 184, 92–99 (2007).

    CAS  PubMed  Google Scholar 

  41. 41

    Chouery, E. et al. Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum. Mutat. 29, E194–E204 (2008). This paper showed that perturbed microglial-cell physiology, without other types of cellular pathology, can cause neurodegeneration.

    PubMed  Google Scholar 

  42. 42

    Stefano, L. et al. The surface-exposed chaperone, Hsp60, is an agonist of the microglial TREM2 receptor. J. Neurochem. 110, 284–294 (2009).

    CAS  PubMed  Google Scholar 

  43. 43

    Greer, J. M. & Capecchi, M. R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).

    CAS  PubMed  Google Scholar 

  44. 44

    Chen, S. K. et al. Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141, 775–785 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Hyman, S. E. A bone to pick with compulsive behavior. Cell 141, 752–754 (2010).

    CAS  PubMed  Google Scholar 

  46. 46

    Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    CAS  PubMed  Google Scholar 

  47. 47

    Reed-Geaghan, E. G., Savage, J. C., Hise, A. G. & Landreth, G. E. CD14 and Toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J. Neurosci. 29, 11982–11992 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Lee, C. Y. & Landreth, G. E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117, 949–960 (2010).

    CAS  PubMed  Google Scholar 

  49. 49

    Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo . Nature Neurosci. 8, 752–758 (2005).

    CAS  PubMed  Google Scholar 

  50. 50

    Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo . Science 308, 1314–1318 (2005). References 49 and 50 established the concept of 'surveillant' microglia.

    ADS  CAS  PubMed  Google Scholar 

  51. 51

    Kim, J. V. et al. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J. Immunol. Methods 352, 89–100 (2010).

    CAS  PubMed  Google Scholar 

  52. 52

    Davalos, D. et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J. Neurosci. Methods 169, 1–7 (2008).

    PubMed  Google Scholar 

  53. 53

    Flugel, A., Bradl, M., Kreutzberg, G. W. & Graeber, M. B. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J. Neurosci. Res. 66, 74–82 (2001).

    CAS  PubMed  Google Scholar 

  54. 54

    Ransohoff, R. M. Microgliosis: the questions shape the answers. Nature Neurosci. 10, 1507–1509 (2007).

    CAS  PubMed  Google Scholar 

  55. 55

    Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neurosci. 10, 1538–1543 (2007). This study used parabiosis to uncover the artefacts that are inherent in using radiation bone-marrow chimaerism to study microglial-cell physiology.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Mildner, A. et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature Neurosci. 10, 1544–1553 (2007).

    CAS  PubMed  Google Scholar 

  57. 57

    Graeber, M. B. et al. The microglia/macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res. 813, 241–253 (1998).

    CAS  PubMed  Google Scholar 

  58. 58

    Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neurosci. 9, 1512–1519 (2006).

    CAS  PubMed  Google Scholar 

  59. 59

    Orr, A. G., Orr, A. L., Li, X. J., Gross, R. E. & Traynelis, S. F. Adenosine A2A receptor mediates microglial process retraction. Nature Neurosci. 12, 872–878 (2009).

    CAS  PubMed  Google Scholar 

  60. 60

    Perry, V. H., Nicoll, J. A. & Holmes, C. Microglia in neurodegenerative disease. Nature Rev. Neurol. 6, 193–201 (2010).

    Google Scholar 

  61. 61

    Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).

    CAS  PubMed  Google Scholar 

  62. 62

    Shpargel, K. B. et al. Preconditioning paradigms and pathways in the brain. Cleve. Clin. J. Med. 75 (Suppl. 2), S77–S82 (2008).

    PubMed  Google Scholar 

  63. 63

    Mirrione, M. M. et al. Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice. Neurobiol. Dis. 39, 85–97 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Nakajima, K. & Kohsaka, S. Microglia activation and their significance in the central nervous system. J. Biochem. 130, 169–175 (2001).

    CAS  PubMed  Google Scholar 

  65. 65

    Nakamura, Y. Regulating factors for microglia activation. Biol. Pharm. Bull. 25, 945–953 (2002).

    CAS  PubMed  Google Scholar 

  66. 66

    Ponomarev, E. D., Shriver, L. P., Maresz, K. & Dittel, B. N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 81, 374–389 (2005).

    CAS  PubMed  Google Scholar 

  67. 67

    Zielasek, J. & Hartung, H.-P. Molecular mechanisms of microglia activation. Adv. Neuroimmunol. 6, 191–222 (1996).

    CAS  PubMed  Google Scholar 

  68. 68

    Schmid, C. D. et al. Differential gene expression in LPS/IFNγ activated microglia and macrophages: in vitro versus in vivo . J. Neurochem. 109 (suppl. 1), 117–125 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci. 10, 1387–1394 (2007).

    CAS  PubMed  Google Scholar 

  70. 70

    Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Barclay, A. N., Wright, G. J., Brooke, G. & Brown, M. H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 23, 285–290 (2002).

    CAS  PubMed  Google Scholar 

  72. 72

    Junker, A. et al. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. Brain 132, 3342–3352 (2009).

    PubMed  Google Scholar 

  73. 73

    Cardona, A. & Ransohoff, R. M. Chemokine receptor CX3CR1. UCSD–Nature Molecule Pages doi:10.1038/mp.a000633.01 (2009).

  74. 74

    Harrison, J. K. et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl Acad. Sci. USA 95, 10896–10901 (1998).

    ADS  CAS  PubMed  Google Scholar 

  75. 75

    Ransohoff, R. M. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity 31, 711–721 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Hundhausen, C. et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell–cell adhesion. Blood 102, 1186–1195 (2003).

    CAS  PubMed  Google Scholar 

  77. 77

    Gahmberg, C. G., Tian, L., Ning, L. & Nyman-Huttunen, H. ICAM-5 — a novel two-facetted adhesion molecule in the mammalian brain. Immunol. Lett. 117, 131–135 (2008).

    CAS  PubMed  Google Scholar 

  78. 78

    Farber, K. & Kettenmann, H. Purinergic signaling and microglia. Pflügers Arch. 452, 615–621 (2006).

    PubMed  Google Scholar 

  79. 79

    Farber, K. & Kettenmann, H. Physiology of microglial cells. Brain Res. Brain Res. Rev. 48, 133–143 (2005).

    PubMed  Google Scholar 

  80. 80

    Cardona, A. E. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nature Neurosci. 9, 917–924 (2006).

    CAS  PubMed  Google Scholar 

  81. 81

    Huang, D. et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J. 20, 896–905 (2006).

    CAS  PubMed  Google Scholar 

  82. 82

    Fuhrmann, M. et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease. Nature Neurosci. 13, 411–413 (2010).

    CAS  PubMed  Google Scholar 

  83. 83

    Jung, S. et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Bechmann, I., Galea. I. & Perry, V. H. What is the blood–brain barrier (not)? Trends Immunol. 28, 5–11 (2007).

    CAS  PubMed  Google Scholar 

  85. 85

    Adams, R. A. et al. The fibrin-derived γ377–395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J. Exp. Med. 204, 571–582 (2007). This study identified a major component of plasma that specifically activates microglia.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Ryu, J. K., Davalos, D. & Akassoglou, K. Fibrinogen signal transduction in the nervous system. J. Thromb. Haemost. 7 (suppl. 1), 151–154 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Chang, T. T. et al. Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. Eur. J. Immunol. 33, 2022–2032 (2003).

    CAS  PubMed  Google Scholar 

  88. 88

    Kawakami, N. et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Hickey, W. F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo . Science 239, 290–292 (1988). This study showed that perivascular macrophages are crucial for restimulating antigen-specific T cells in the CNS.

    ADS  CAS  PubMed  Google Scholar 

  90. 90

    Becher, B., Bechmann, I. & Greter, M. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J. Mol. Med. 84, 532–543 (2006).

    CAS  PubMed  Google Scholar 

  91. 91

    McMahon, E. J., Bailey, S. L. & Miller, S. D. CNS dendritic cells: critical participants in CNS inflammation? Neurochem. Int. 49, 195–203 (2006).

    CAS  PubMed  Google Scholar 

  92. 92

    Bailey, S. L., Carpentier, P. A., McMahon, E. J., Begolka, W. S. & Miller, S. D. Innate and adaptive immune responses of the central nervous system. Crit. Rev. Immunol. 26, 149–188 (2006).

    CAS  PubMed  Google Scholar 

  93. 93

    Kivisakk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009). This paper vividly dissected the interactions of antigen-specific T cells with perivascular and meningeal macrophages during extravasation of the T cells into the subarachnoid space and entry to the CNS parenchyma.

    ADS  PubMed  Google Scholar 

  95. 95

    Aloisi, F., De, S. R., Columba-Cabezas, S., Penna, G. & Adorini, L. Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte–macrophage colony-stimulating factor and interaction with TH1 cells. J. Immunol. 164, 1705–1712 (2000).

    CAS  PubMed  Google Scholar 

  96. 96

    McMahon, E. J., Bailey, S. L., Castenada, C. V., Waldner, H. & Miller, S. D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Med. 11, 335–339 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Heppner, F. L., Greter, M., Marino, D., Falsig, J. & Raivich, G. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nature Med. 11, 146–152 (2005).

    CAS  PubMed  Google Scholar 

  98. 98

    Kaufmann, M. H. The Atlas of Mouse Development (Elsevier, 1992).

    Google Scholar 

  99. 99

    Chitnis, T. et al. Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am. J. Pathol. 170, 1695–1712 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Piccio, L. et al. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur. J. Immunol. 37, 1290–1301 (2007).

    CAS  PubMed  Google Scholar 

  101. 101

    Takahashi, K., Rochford, C. D. & Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Mott, R. T. et al. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production. Glia 46, 369–379 (2004).

    PubMed  Google Scholar 

  103. 103

    Berangere, R. D. & Przedborski, S. Fractalkine: moving from chemotaxis to neuroprotection. Nature Neurosci. 9, 859–861 (2006).

    Google Scholar 

  104. 104

    Vitkovic, L., Maeda, S. & Sternberg, E. Anti-inflammatory cytokines: expression and action in the brain. Neuroimmunomodulation 9, 295–312 (2001).

    CAS  PubMed  Google Scholar 

  105. 105

    Qian, L. et al. Potent anti-inflammatory and neuroprotective effects of TGF-β1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia. J. Immunol. 181, 660–668 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Farber, K., Pannasch, U. & Kettenmann, H. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell. Neurosci. 29, 128–138 (2005).

    PubMed  Google Scholar 

  107. 107

    Neumann, H. & Wekerle, H. Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J. Neuropathol. Exp. Neurol. 57, 1–9 (1998).

    CAS  PubMed  Google Scholar 

Download references


Work in our laboratories was supported by research grants from the US National Institutes of Health/National Institute of Neurological Diseases and Stroke (to R.M.R.), by research grants and fellowships from the US National MS Society (to R.M.R. and A.E.C.) and by the Williams Family Foundation for MS Research (to R.M.R.).

Author information



Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ransohoff, R., Cardona, A. The myeloid cells of the central nervous system parenchyma. Nature 468, 253–262 (2010).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links