Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Myelination and support of axonal integrity by glia

Abstract

The myelination of axons by glial cells was the last major step in the evolution of cells in the vertebrate nervous system, and white-matter tracts are key to the architecture of the mammalian brain. Cell biology and mouse genetics have provided insight into axon–glia signalling and the molecular architecture of the myelin sheath. Glial cells that myelinate axons were found to have a dual role by also supporting the long-term integrity of those axons. This function may be independent of myelin itself. Myelin abnormalities cause a number of neurological diseases, and may also contribute to complex neuropsychiatric disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Oligodendrocyte defects causing axonal degeneration in the central nervous system.
Figure 2: Oligodendrocyte defects may lead to cognitive impairment.

References

  1. 1

    Sherman, D. L. & Brophy, P. J. Mechanisms of axon ensheathment and myelin growth. Nature Rev. Neurosci. 6, 683–690 (2005).

    CAS  Google Scholar 

  2. 2

    Jessen, K. R. & Mirsky, R. The origin and development of glial cells in peripheral nerves. Nature Rev. Neurosci. 6, 671–682 (2005).

    CAS  Google Scholar 

  3. 3

    Simons, M. & Trotter, J. Wrapping it up: the cell biology of myelination. Curr. Opin. Neurobiol. 17, 533–540 (2007).

    CAS  PubMed  Google Scholar 

  4. 4

    Salzer, J. L., Brophy, P. J. & Peles, E. Molecular domains of myelinated axons in the peripheral nervous system. Glia 56, 1532–1540 (2008).

    PubMed  Google Scholar 

  5. 5

    Geren, B. B. & Raskind, J. Development of the fine structure of the myelin sheath in sciatic nerves of chick embryos. Proc. Natl Acad. Sci. USA 39, 880–884 (1953). This classic work demonstrated, using electron microscopy, that myelin is a glial-cell ensheathment of axons, rather than a specialization of axons.

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Bullock, T. H., Moore, J. K. & Fields, R. D. Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci. Lett. 48, 145–148 (1984).

    CAS  PubMed  Google Scholar 

  7. 7

    Zalc, B., Goujet, D. & Colman, D. The origin of the myelination program in vertebrates. Curr. Biol. 18, R511–R512 (2008).

    CAS  PubMed  Google Scholar 

  8. 8

    Hartline, D. K. What is myelin? Neuron Glia Biol. 4, 153–163 (2008).

    PubMed  Google Scholar 

  9. 9

    Sowell, E. R. et al. Mapping cortical change across the human lifespan. Nature Neurosci. 6, 309–315 (2003).

    CAS  PubMed  Google Scholar 

  10. 10

    Griffin, J. W. & Thompson, W. J. Biology and pathology of nonmyelinating Schwann cells. Glia 56, 1518–1531 (2008).

    PubMed  Google Scholar 

  11. 11

    Chen, S. et al. Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nature Neurosci. 6, 1186–1193 (2003). Although they were generated for a different purpose, the mutants reported in this study demonstrate that Remak cells are required for the integrity of unmyelinated C-fibre axons.

    CAS  PubMed  Google Scholar 

  12. 12

    Nave, K. A. & Trapp, B. D. Axon–glial signaling and the glial support of axon function. Annu. Rev. Neurosci. 31, 535–561 (2008).

    CAS  PubMed  Google Scholar 

  13. 13

    Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005). The first paper to show that cultured sympathetic neurons, virally transduced to overexpress NRG1, instruct associated Schwann cells to myelinate thin axons de novo.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Trotter, J., Karram, K. & Nishiyama, A. NG2 cells: Properties, progeny and origin. Brain Res. Rev. 63, 72–82 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Bergles, D. E., Jabs, R. & Steinhauser, C. Neuron–glia synapses in the brain. Brain Res. Rev. 63, 130–137 (2010).

    CAS  PubMed  Google Scholar 

  16. 16

    Káradóttir, R., Hamilton, N. B., Bakiri, Y. & Attwell, D. Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nature Neurosci. 11, 450–456 (2008). The only report so far that some precursor cells of myelin-forming oligodendrocytes can be triggered to generate action potentials.

    PubMed  Google Scholar 

  17. 17

    Nave, K.-A. & Salzer, J. L. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492–500 (2006).

    CAS  PubMed  Google Scholar 

  18. 18

    Griffiths, I. et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 280, 1610–1613 (1998). The first paper to show that oligodendrocytes serve the vital function of preserving the integrity and survival of axons, independent of myelin formation.

    ADS  CAS  PubMed  Google Scholar 

  19. 19

    Edgar, J. M. et al. Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J. Cell. Biol. 166, 121–131 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Lappe-Siefke, C. et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genet. 33, 366–374 (2003).

    CAS  PubMed  Google Scholar 

  21. 21

    Edgar, J. M. et al. Early ultrastructural defects of axons and axon–glia junctions in mice lacking expression of Cnp1 . Glia 57, 1815–1824 (2009).

    PubMed  Google Scholar 

  22. 22

    Yin, X. et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J. Neurosci. 18, 1953–1962 (1998).

    CAS  PubMed  Google Scholar 

  23. 23

    Wang, S. S. et al. Functional trade-offs in white matter axonal scaling. J. Neurosci. 28, 4047–4056 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Nave, K. A. Myelination and the trophic support of long axons. Nature Rev. Neurosci. 11, 275–283 (2010).

    CAS  Google Scholar 

  25. 25

    de Waegh, S. M., Lee, V. M. & Brady, S. T. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68, 451–463 (1992).

    CAS  PubMed  Google Scholar 

  26. 26

    Brady, S. T. et al. Formation of compact myelin is required for maturation of the axonal cytoskeleton. J. Neurosci. 19, 7278–7288 (1999).

    CAS  PubMed  Google Scholar 

  27. 27

    Quarles, R. H. Myelin-associated glycoprotein (MAG): past, present and beyond. J. Neurochem. 100, 1431–1448 (2007).

    CAS  PubMed  Google Scholar 

  28. 28

    Nguyen, T. et al. Axonal protective effects of the myelin-associated glycoprotein. J. Neurosci. 29, 630–637 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Simon, C. M., Jablonka, S., Ruiz, R., Tabares, L. & Sendtner, M. Ciliary neurotrophic factor-induced sprouting preserves motor function in a mouse model of mild spinal muscular atrophy. Hum. Mol. Genet. 19, 973–986 (2010).

    CAS  PubMed  Google Scholar 

  30. 30

    Keswani, S. C. et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann. Neurol. 56, 815–826 (2004).

    CAS  PubMed  Google Scholar 

  31. 31

    Riethmacher, D. et al. Severe neuropathies in mice with targeted mutations in the ErbB3 receptor. Nature 389, 725–730 (1997). A genetic study providing evidence that before myelination, Schwann cells are essential for the survival of neurons in dorsal-root ganglia.

    ADS  CAS  PubMed  Google Scholar 

  32. 32

    Klugmann, M. et al. Assembly of CNS myelin in the absence of proteolipid protein. Neuron 18, 59–70 (1997).

    CAS  PubMed  Google Scholar 

  33. 33

    Rosenbluth, J., Nave, K. A., Mierzwa, A. & Schiff, R. Subtle myelin defects in PLP-null mice. Glia 54, 172–182 (2006).

    PubMed  Google Scholar 

  34. 34

    Werner, H. B. et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J. Neurosci. 27, 7717–7730 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Southwood, C. M., Peppi, M., Dryden, S., Tainsky, M. A. & Gow, A. Microtubule deacetylases, SirT2 and HDAC6, in the nervous system. Neurochem. Res. 32, 187–195 (2007).

    CAS  PubMed  Google Scholar 

  36. 36

    Li, W. et al. Sirtuin 2, a mammalian homolog of yeast silent information regulator-2 longevity regulator, is an oligodendroglial protein that decelerates cell differentiation through deacetylating alpha-tubulin. J. Neurosci. 27, 2606–2616 (2007).

    PubMed  Google Scholar 

  37. 37

    Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000–1004 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Kassmann, C. M. et al. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genet. 39, 969–976 (2007).

    CAS  PubMed  Google Scholar 

  39. 39

    Gravel, M. et al. 2′,3′-cyclic nucleotide 3′-phosphodiesterase: a novel RNA-binding protein that inhibits protein synthesis. J. Neurosci. Res. 87, 1069–1079 (2009).

    CAS  PubMed  Google Scholar 

  40. 40

    Lee, J., Gravel, M., Zhang, R., Thibault, P. & Braun, P. E. Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J. Cell. Biol. 170, 661–673 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Readhead, C., Schneider, A., Griffiths, I. & Nave, K. A. Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage. Neuron 12, 583–595 (1994).

    CAS  PubMed  Google Scholar 

  42. 42

    Kagawa, T. et al. Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron 13, 427–442 (1994).

    CAS  PubMed  Google Scholar 

  43. 43

    Simons, M. et al. Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus–Merzbacher disease. J. Cell Biol. 157, 327–336 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Anderson, T. J. et al. Late-onset neurodegeneration in mice with increased dosage of the proteolipid protein gene. J. Comp. Neurol. 394, 506–519 (1998).

    CAS  PubMed  Google Scholar 

  45. 45

    Ip, C. W. et al. Immune cells contribute to myelin degeneration and axonopathic changes in mice overexpressing proteolipid protein in oligodendrocytes. J. Neurosci. 26, 8206–8216 (2006). The finding that a primary defect of myelinating oligodendrocytes triggers a T-cell-mediated immune response that contributes to disease severity (see also ref. 38).

    CAS  PubMed  Google Scholar 

  46. 46

    Kroner, A., Ip, C. W., Thalhammer, J., Nave, K. A. & Martini, R. Ectopic T-cell specificity and absence of perforin and granzyme B alleviate neural damage in oligodendrocyte mutant mice. Am. J. Pathol. 176, 549–555 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Edgar, J. M. et al. Demyelination and axonal preservation in a transgenic mouse model of Pelizaeus–Merzbacher disease. EMBO Mol. Med. 2, 42–50 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Mayatepek, E., Baumann, M., Meissner, T., Hanefeld, F. & Korenke, G. C. Role of leukotrienes as indicators of the inflammatory demyelinating reaction in x-linked cerebral adrenoleukodystrophy. J. Neurol. 250, 1259–1260 (2003).

    PubMed  Google Scholar 

  49. 49

    Compston, A. & Coles, A. Multiple sclerosis. Lancet 372, 1502–1517 (2008).

    CAS  PubMed  Google Scholar 

  50. 50

    Rudick, R. A. & Trapp, B. D. Gray-matter injury in multiple sclerosis. New Engl. J. Med. 361, 1505–1506 (2009).

    CAS  PubMed  Google Scholar 

  51. 51

    Trapp, B. D. & Nave, K. A. Multiple sclerosis: an immune or neurodegenerative disorder? Annu. Rev. Neurosci. 31, 247–269 (2008).

    CAS  PubMed  Google Scholar 

  52. 52

    Trapp, B. D. & Stys, P. K. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 8, 280–291 (2009).

    CAS  PubMed  Google Scholar 

  53. 53

    Garbern, J. Y. Pelizaeus–Merzbacher disease: genetic and cellular pathogenesis. Cell Mol. Life Sci. 64, 50–65 (2007).

    CAS  PubMed  Google Scholar 

  54. 54

    Woodward, K. J. The molecular and cellular defects underlying Pelizaeus–Merzbacher disease. Expert Rev. Mol. Med. 10, e14 (2008).

    PubMed  Google Scholar 

  55. 55

    Uhlenberg, B. et al. Mutations in the gene encoding gap junction protein alpha 12 (connexin 46.6) cause Pelizaeus–Merzbacher-like disease. Am. J. Hum. Genet. 75, 251–260 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Maglione, M. et al. Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58, 1104–1117 (2010).

    PubMed  Google Scholar 

  57. 57

    Henneke, M. et al. GJA12 mutations are a rare cause of Pelizaeus–Merzbacher-like disease. Neurology 70, 748–754 (2008).

    CAS  PubMed  Google Scholar 

  58. 58

    Johnson, A. B. & Brenner, M. Alexander's disease: clinical, pathologic, and genetic features. J. Child Neurol. 18, 625–632 (2003).

    PubMed  Google Scholar 

  59. 59

    van der Knaap, M. S. et al. Mutations in each of the five subunits of translation initiation factor eIF2B can cause leukoencephalopathy with vanishing white matter. Ann. Neurol. 51, 264–270 (2002).

    CAS  PubMed  Google Scholar 

  60. 60

    Dietrich, J. et al. EIF2B5 mutations compromise GFAP+ astrocyte generation in vanishing white matter leukodystrophy. Nature Med. 11, 277–283 (2005).

    CAS  PubMed  Google Scholar 

  61. 61

    Baes, M. & Aubourg, P. Peroxisomes, myelination, and axonal integrity in the CNS. Neuroscientist 15, 367–379 (2009).

    CAS  PubMed  Google Scholar 

  62. 62

    Nave, K. A., Sereda, M. W. & Ehrenreich, H. Mechanisms of disease: inherited demyelinating neuropathies—from basic to clinical research. Nature Clin. Pract. Neurol. 3, 453–464 (2007).

    CAS  Google Scholar 

  63. 63

    Suter, U. & Scherer, S. S. Disease mechanisms in inherited neuropathies. Nature Rev. Neurosci. 4, 714–726 (2003).

    CAS  Google Scholar 

  64. 64

    De Jonghe, P. et al. The Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene is associated with a clinically distinct Charcot–Marie–Tooth phenotype. Brain 122, 281–290 (1999). A mutation of a myelin gene is found to cause the 'axonal form' of CMT disease, which uncouples Schwann-cell functions in myelination and axonal preservation.

    PubMed  Google Scholar 

  65. 65

    Hakak, Y. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl Acad. Sci. USA 98, 4746–4751 (2001).

    ADS  CAS  Google Scholar 

  66. 66

    Fields, R. D. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 31, 361–370 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nature Neurosci. 8, 1148–1150 (2005).

    CAS  PubMed  Google Scholar 

  68. 68

    Stevens, B. & Fields, R. D. Response of Schwann cells to action potentials in development. Science 287, 2267–2271 (2000).

    ADS  CAS  PubMed  Google Scholar 

  69. 69

    Barres, B. A. & Raff, M. C. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361, 258–260 (1993).

    ADS  CAS  PubMed  Google Scholar 

  70. 70

    Stevens, B., Porta, S., Haak, L. L., Gallo, V. & Fields, R. D. Adenosine: a neuron–glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36, 855–868 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Sanchez, I., Hassinger, L., Paskevich, P. A., Shine, H. D. & Nixon, R. A. Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J. Neurosci. 16, 5095–5105 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Sanchez, I. et al. Local control of neurofilament accumulation during radial growth of myelinating axons in vivo. Selective role of site-specific phosphorylation. J. Cell Biol. 151, 1013–1024 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Bergles, D. E., Roberts, J. D., Somogyi, P. & Jahr, C. E. Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405, 187–191 (2000). The discovery that unmyelinated axons make (transient) synaptic contact with the precursor cells of myelin-forming oligodendrocytes.

    ADS  CAS  PubMed  Google Scholar 

  74. 74

    Kukley, M., Capetillo-Zarate, E. & Dietrich, D. Vesicular glutamate release from axons in white matter. Nature Neurosci. 10, 311–320 (2007).

    CAS  PubMed  Google Scholar 

  75. 75

    Káradóttir, R., Cavelier, P., Bergersen, L. H. & Attwell, D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005).

    ADS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Micu, I. et al. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    McGee, A. W., Yang, Y., Fischer, Q. S., Daw, N. W. & Strittmatter, S. M. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309, 2222–2226 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Budel, S. et al. Genetic variants of Nogo-66 receptor with possible association to schizophrenia block myelin inhibition of axon growth. J. Neurosci. 28, 13161–13172 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Gregoriou, G. G., Gotts, S. J., Zhou, H. & Desimone, R. Long-range neural coupling through synchronization with attention. Prog. Brain Res. 176, 35–45 (2009).

    PubMed  Google Scholar 

  80. 80

    Dan, Y. & Poo, M. M. Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 (2004).

    CAS  Google Scholar 

  81. 81

    Toonen, R. F. et al. Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size. Proc. Natl Acad. Sci. USA 103, 18332–18337 (2006).

    ADS  CAS  PubMed  Google Scholar 

  82. 82

    Griffiths, I. et al. Current concepts of PLP and its role in the nervous system. Microsc. Res. Tech. 41, 344–358 (1998).

    CAS  PubMed  Google Scholar 

  83. 83

    Richardson, W. D., Kessaris, N. & Pringle, N. Oligodendrocyte wars. Nature Rev. Neurosci. 7, 11–18 (2006).

    CAS  Google Scholar 

  84. 84

    Kukley, M., Nishiyama, A. & Dietrich, D. The fate of synaptic input to NG2 glial cells: neurons specifically downregulate transmitter release onto differentiating oligodendroglial cells. J. Neurosci. 30, 8320–8331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Jahn, O., Tenzer, S. & Werner, H. B. Myelin proteomics: molecular anatomy of an insulating sheath. Mol. Neurobiol. 40, 55–72 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nature Neurosci. 8, 468–475 (2005).

    CAS  PubMed  Google Scholar 

  87. 87

    Michailov, G. V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).

    ADS  CAS  PubMed  Google Scholar 

  88. 88

    Taveggia, C., Feltri, M. L. & Wrabetz, L. Signals to promote myelin formation and repair. Nature Rev. Neurol. 6, 276–287 (2010).

    Google Scholar 

  89. 89

    Pertusa, M., Morenilla-Palao, C., Carteron, C., Viana, F. & Cabedo, H. Transcriptional control of cholesterol biosynthesis in Schwann cells by axonal neuregulin 1. J. Biol. Chem. 282, 28768–28778 (2007).

    CAS  PubMed  Google Scholar 

  90. 90

    Goebbels, S. et al. Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J. Neurosci. 30, 8953–8964 (2010).

    CAS  PubMed  Google Scholar 

  91. 91

    Cotter, L. et al. Dlg1-PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328, 1415–1418 (2010).

    ADS  CAS  PubMed  Google Scholar 

  92. 92

    Bremer, J. et al. Axonal prion protein is required for peripheral myelin maintenance. Nature Neurosci. 13, 310–318 (2010).

    CAS  PubMed  Google Scholar 

  93. 93

    Chan, J. R. et al. NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron 43, 183–191 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Brinkmann, B. G. et al. Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron 59, 581–595 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Carson, M. J., Behringer, R. R., Brinster, R. L. & McMorris, F. A. Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 10, 729–740 (1993).

    CAS  PubMed  Google Scholar 

  96. 96

    Ishibashi, T. et al. Astrocytes promote myelination in response to electrical impulses. Neuron 49, 823–832 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Flores, A. I. et al. Constitutively active Akt induces enhanced myelination in the CNS. J. Neurosci. 28, 7174–7183 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Rosenberg, S. S., Kelland, E. E., Tokar, E., De la Torre, A. R. & Chan, J. R. The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc. Natl Acad. Sci. USA 105, 14662–14667 (2008). This reports that cultured oligodendrocytes can 'myelinate' chemically fixed axons, which implies that only limited bidirectional signalling is required.

    ADS  CAS  PubMed  Google Scholar 

  99. 99

    Charles, P. et al. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc. Natl Acad. Sci. USA 97, 7585–7590 (2000).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to all colleagues whose important work could not be cited owing to space limitations. I thank S. Goebbels and H. Werner for help with figures, and J. Edgar and D. Dietrich for providing images. I also thank all members of my group as well as D. Attwell, P. Casaccia, J. Edgar, I. Griffiths, O. Peles, J. Salzer, S. Scherer, P. Stys and B. Trapp for discussions. Work in my laboratory is supported by the German Research Foundation (Center for Molecular Physiology of the Brain in Göttingen, SFB/TR43), the European Leukodystrophy Association, the Myelin Project, the German Federal Ministry of Education and Research (Leukonet) and the European Union (Sixth Framework Programme, Neuropromise; Seventh Framework Programme, Ngidd, Leukotreat).

Author information

Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nave, KA. Myelination and support of axonal integrity by glia. Nature 468, 244–252 (2010). https://doi.org/10.1038/nature09614

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing