Developmental genetics of vertebrate glial–cell specification

Article metrics


Oligodendrocytes and astrocytes are macroglial cells of the vertebrate central nervous system. These cells have diverse roles in the maintenance of neurological function. In the embryo, the genetic mechanisms that underlie the specification of macroglial precursors in vivo appear strikingly similar to those that regulate the development of the diverse neuron types. The switch from producing neuronal to glial subtype-specific precursors can be modelled as an interplay between region-restricted components and temporal regulators that determine neurogenic or gliogenic phases of development, contributing to glial diversity. Gaining insight into the developmental genetics of macroglia has great potential to improve our understanding of a variety of neurological disorders in humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Patterns of gliogenesis in embryonic and adult progenitor zones.
Figure 2: Patterning of the neural tube generates unique domains for neuronal and glial progenitors.
Figure 3: Multiple waves of oligodendrocyte production in the mammalian CNS.


  1. 1

    Zalc, B. & Colman, D. R. Origins of vertebrate success. Science 288, 271–272 (2000).

  2. 2

    Roots, B. I. The phylogeny of invertebrates and the evolution of myelin. Neuron Glia Biol. 4, 101–109 (2008).

  3. 3

    Lin, S. C. & Bergles, D. E. Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neurosci. 7, 24–32 (2004). This paper shows that OPCs of the hippocampus receive direct input from interneurons, suggesting that GABA (γ-aminobutyric acid)-induced chloride flux influences oligodendrocyte development and the efficacy of glutamate-induced signalling in OPCs.

  4. 4

    Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000). This paper highlights the neurogenic potential of radial glia. Using fluorescence-activated cell sorting, radial glia isolated from the embryonic neocortex were shown to generate neurons, as well as astrocytes.

  5. 5

    Miyata, T., Kawaguchi, A., Okano, H. & Ogawa, M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–741 (2001).

  6. 6

    Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001). This study used retroviral labelling in utero and showed that neurons were directly generated through the self-renewal division of radial glia.

  7. 7

    Anthony, T. E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

  8. 8

    Haubensak, W., Attardo, A., Denk, W. & Huttner, W. B. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc. Natl Acad. Sci. USA 101, 3196–3201 (2004).

  9. 9

    Miyata, T. et al. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131, 3133–3145 (2004).

  10. 10

    Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neurosci. 7, 136–144 (2004).

  11. 11

    Noctor, S. C., Martinez-Cerdeno, V. & Kriegstein, A. R. Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J. Comp. Neurol. 508, 28–44 (2008).

  12. 12

    Briscoe, J. & Novitch, B. G. Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Phil. Trans. R. Soc. B 363, 57–70 (2008).

  13. 13

    Ulloa, F. & Marti, E. Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Dev. Dyn. 239, 69–76 (2010).

  14. 14

    Orentas, D. M., Hayes, J. E., Dyer, K. L. & Miller, R. H. Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126, 2419–2429 (1999).

  15. 15

    Dessaud, E. et al. Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature 450, 717–720 (2007).

  16. 16

    Vallstedt, A., Klos, J. M. & Ericson, J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55–67 (2005).

  17. 17

    Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

  18. 18

    Zhou, Q. & Anderson, D. J. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 (2002).

  19. 19

    Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).

  20. 20

    Muroyama, Y., Fujiwara, Y., Orkin, S. H. & Rowitch, D. H. Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube. Nature 438, 360–363 (2005). This paper was the first to suggest that astrocyte development is regulated by region-restricted mechanisms.

  21. 21

    Hochstim, C., Deneen, B., Lukaszewicz, A., Zhou, Q. & Anderson, D. J. Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell 133, 510–522 (2008). This paper shows that a homeodomain code in the ventral neural tube regulates the diversity of astrocytes. It provides the strongest evidence so far for the 'segmental model' of astrocyte development.

  22. 22

    Genethliou, N. et al. Spatially distinct functions of PAX6 and NKX2.2 during gliogenesis in the ventral spinal cord. Biochem. Biophys. Res. Commun. 382, 69–73 (2009).

  23. 23

    Hoch, R. V., Rubenstein, J. L. & Pleasure, S. Genes and signaling events that establish regional patterning of the mammalian forebrain. Semin. Cell Dev. Biol. 20, 378–386 (2009).

  24. 24

    Parras, C. M. et al. The proneural gene Mash1 specifies an early population of telencephalic oligodendrocytes. J. Neurosci. 27, 4233–4242 (2007).

  25. 25

    Bylund, M., Andersson, E., Novitch, B. G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nature Neurosci. 6, 1162–1168 (2003).

  26. 26

    Sandberg, M., Kallstrom, M. & Muhr, J. Sox21 promotes the progression of vertebrate neurogenesis. Nature Neurosci. 8, 995–1001 (2005).

  27. 27

    Masahira, N. et al. Olig2-positive progenitors in the embryonic spinal cord give rise not only to motoneurons and oligodendrocytes, but also to a subset of astrocytes and ependymal cells. Dev. Biol. 293, 358–369 (2006).

  28. 28

    Lee, S. K., Lee, B., Ruiz, E. C. & Pfaff, S. L. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev. 19, 282–294 (2005).

  29. 29

    Park, H. C. & Appel, B. Delta–Notch signaling regulates oligodendrocyte specification. Development 130, 3747–3755 (2003).

  30. 30

    Battiste, J. et al. Ascl1 defines sequentially generated lineage-restricted neuronal and oligodendrocyte precursor cells in the spinal cord. Development 134, 285–293 (2007).

  31. 31

    Gaiano, N., Nye, J. S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404 (2000).

  32. 32

    Yang, X. et al. Notch1 signaling influences v2 interneuron and motor neuron development in the spinal cord. Dev. Neurosci. 28, 102–117 (2006).

  33. 33

    Itoh, M. et al. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev. Cell 4, 67–82 (2003).

  34. 34

    Karcavich, R. & Doe, C. Q. Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J. Comp. Neurol. 481, 240–251 (2005).

  35. 35

    Esain, V., Postlethwait, J. H., Charnay, P. & Ghislain, J. FGF-receptor signalling controls neural cell diversity in the zebrafish hindbrain by regulating olig2 and sox9 . Development 137, 33–42 (2010).

  36. 36

    Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006). In this paper, the 'pro-glial-cell' transcription factor NFIA is described and shown to promote gliogenesis, inhibit neurogenesis in ventricular-zone spinal-cord progenitors and, at later stages, promote differentiation into astrocytes.

  37. 37

    das Neves, L. et al. Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc. Natl Acad. Sci. USA 96, 11946–11951 (1999).

  38. 38

    Steele-Perkins, G. et al. The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol. Cell. Biol. 25, 685–698 (2005).

  39. 39

    Cebolla, B. & Vallejo, M. Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J. Neurochem. 97, 1057–1070 (2006).

  40. 40

    Wilczynska, K. M. et al. Nuclear factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes. Stem Cells 27, 1173–1181 (2009).

  41. 41

    Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

  42. 42

    Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neurosci. 9, 743–751 (2006).

  43. 43

    Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

  44. 44

    Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872 (2000).

  45. 45

    Petryniak, M. A., Potter, G. B., Rowitch, D. H. & Rubenstein, J. L. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55, 417–433 (2007). This paper shows that DLX1 and DLX2 repress oligodendrocyte production in an area of the forebrain and suggests that DLX1 and DLX2 have non-cell-autonomous effects or epigenetic effects in the oligodendrocyte lineage.

  46. 46

    Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

  47. 47

    Molne, M. et al. Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. J. Neurosci. Res. 59, 301–311 (2000).

  48. 48

    Takizawa, T. et al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev. Cell 1, 749–758 (2001).

  49. 49

    Hermanson, O., Jepsen, K. & Rosenfeld, M. G. N-CoR controls differentiation of neural stem cells into astrocytes. Nature 419, 934–939 (2002).

  50. 50

    Sardi, S. P., Murtie, J., Koirala, S., Patten, B. A. & Corfas, G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127, 185–197 (2006).

  51. 51

    Fox, I. J. & Kornblum, H. I. Developmental profile of ErbB receptors in murine central nervous system: implications for functional interactions. J. Neurosci. Res. 79, 584–597 (2005).

  52. 52

    Ghashghaei, H. T. et al. Reinduction of ErbB2 in astrocytes promotes radial glial progenitor identity in adult cerebral cortex. Genes Dev. 21, 3258–3271 (2007).

  53. 53

    Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

  54. 54

    Namihira, M. et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell 16, 245–255 (2009).

  55. 55

    Campos, L. S., Duarte, A. J., Branco, T. & Henrique, D. mDll1 and mDll3 expression in the developing mouse brain: role in the establishment of the early cortex. J. Neurosci. Res. 64, 590–598 (2001).

  56. 56

    Yoon, K. J. et al. Mind bomb 1-expressing intermediate progenitors generate Notch signaling to maintain radial glial cells. Neuron 58, 519–531 (2008).

  57. 57

    Kamakura, S. et al. Hes binding to STAT3 mediates crosstalk between Notch and JAK–STAT signalling. Nature Cell Biol. 6, 547–554 (2004).

  58. 58

    Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005). This paper provides evidence that embryonic cortical neurons regulate astrocyte development by secreting the neurotrophic cytokine CT1, which activates the gp130–JAK–STAT signalling pathway.

  59. 59

    Bonni, A. et al. Regulation of gliogenesis in the central nervous system by the JAK–STAT signaling pathway. Science 278, 477–483 (1997).

  60. 60

    Ochiai, W., Yanagisawa, M., Takizawa, T., Nakashima, K. & Taga, T. Astrocyte differentiation of fetal neuroepithelial cells involving cardiotrophin-1-induced activation of STAT3. Cytokine 14, 264–271 (2001).

  61. 61

    Ware, C. B. et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299 (1995).

  62. 62

    Koblar, S. A. et al. Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl Acad. Sci. USA 95, 3178–3181 (1998).

  63. 63

    Nakashima, K. et al. Synergistic signaling in fetal brain by STAT3–Smad1 complex bridged by p300. Science 284, 479–482 (1999).

  64. 64

    Mabie, P. C., Mehler, M. F. & Kessler, J. A. Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J. Neurosci. 19, 7077–7088 (1999).

  65. 65

    Nakashima, K. et al. BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc. Natl Acad. Sci. USA 98, 5868–5873 (2001).

  66. 66

    Parras, C. M. et al. Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J. 23, 4495–4505 (2004).

  67. 67

    Marshall, C. A., Novitch, B. G. & Goldman, J. E. Olig2 directs astrocyte and oligodendrocyte formation in postnatal subventricular zone cells. J. Neurosci. 25, 7289–7298 (2005).

  68. 68

    Fogarty, M., Richardson, W. D. & Kessaris, N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132, 1951–1959 (2005).

  69. 69

    Nery, S., Wichterle, H. & Fishell, G. Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540 (2001).

  70. 70

    Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neurosci. 9, 173–179 (2006). This study used Cre– loxP fate-mapping technology and showed that oligodendrocytes develop in at least three distinct waves from the time of embryogenesis through the postnatal stages.

  71. 71

    Buffo, A. et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc. Natl Acad. Sci. USA 105, 3581–3586 (2008).

  72. 72

    Hatton, J. D., Nguyen, M. H. & U, H. S. Differential migration of astrocytes grafted into the developing rat brain. Glia 9, 113–119 (1993).

  73. 73

    Jacobsen, C. T. & Miller, R. H. Control of astrocyte migration in the developing cerebral cortex. Dev. Neurosci. 25, 207–216 (2003).

  74. 74

    Zhou, H. F. & Lund, R. D. Migration of astrocytes transplanted to the midbrain of neonatal rats. J. Comp. Neurol. 317, 145–155 (1992).

  75. 75

    Gray, G. E. & Sanes, J. R. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6, 211–225 (1991).

  76. 76

    Merkle, F. T., Mirzadeh, Z. & Alvarez-Buylla, A. Mosaic organization of neural stem cells in the adult brain. Science 317, 381–384 (2007). This paper shows that in the adult the subventricular zone contains regions that produce different types of interneuron, which contribute to the rostral migratory stream and the olfactory bulb.

  77. 77

    Freeman, M. Specification and morphogenesis of astrocytes. Science (in the press).

  78. 78

    Goldman, S. A., Schanz, S. & Windrem, M. S. Stem cell-based strategies for treating pediatric disorders of myelin. Hum. Mol. Genet. 17, R76–R83 (2008).

  79. 79

    Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nature Neurosci. 10, 615–622 (2007).

  80. 80

    Nicoll, J. A. & Weller, R. O. A new role for astrocytes: β-amyloid homeostasis and degradation. Trends Mol. Med. 9, 281–282 (2003).

  81. 81

    Saijo, K. et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47–59 (2009).

  82. 82

    Chang, A., Tourtellotte, W. W., Rudick, R. & Trapp, B. D. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N. Engl. J. Med. 346, 165–173 (2002).

  83. 83

    Billiards, S. S. et al. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol. 18, 153–163 (2008).

  84. 84

    Richardson, W. D., Kessaris, N. & Pringle, N. Oligodendrocyte wars. Nature Rev. Neurosci. 7, 11–18 (2006).

  85. 85

    Raff, M. C., Miller, R. H. & Noble, M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303, 390–396 (1983).

  86. 86

    Herrera, J. et al. Embryonic-derived glial-restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo . Exp. Neurol. 171, 11–21 (2001).

  87. 87

    Rao, M. S., Noble, M. & Mayer-Proschel, M. A tripotential glial precursor cell is present in the developing spinal cord. Proc. Natl Acad. Sci. USA 95, 3996–4001 (1998).

  88. 88

    Costa, M. R., Bucholz, O., Schroeder, T. & Gotz, M. Late origin of glia-restricted progenitors in the developing mouse cerebral cortex. Cereb. Cortex 19 (suppl. 1), i135–i143 (2009).

  89. 89

    Wu, S., Wu, Y. & Capecchi, M. R. Motoneurons and oligodendrocytes are sequentially generated from neural stem cells but do not appear to share common lineage-restricted progenitors in vivo . Development 133, 581–590 (2006).

  90. 90

    Levison, S. W. & Goldman, J. E. Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10, 201–212 (1993).

  91. 91

    Parnavelas, J. G. Glial cell lineages in the rat cerebral cortex. Exp. Neurol. 156, 418–429 (1999).

  92. 92

    Zhao, J. W., Raha-Chowdhury, R., Fawcett, J. W. & Watts, C. Astrocytes and oligodendrocytes can be generated from NG2+ progenitors after acute brain injury: intracellular localization of oligodendrocyte transcription factor 2 is associated with their fate choice. Eur. J. Neurosci. 29, 1853–1869 (2009).

  93. 93

    Tatsumi, K. et al. Genetic fate mapping of Olig2 progenitors in the injured adult cerebral cortex reveals preferential differentiation into astrocytes. J. Neurosci. Res. 86, 3494–3502 (2008).

  94. 94

    Menn, B. et al. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918 (2006).

  95. 95

    Jablonska, B. et al. Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nature Neurosci. 13, 541–550 (2010).

  96. 96

    Raymond, C. S. & Soriano, P. High-efficiency FLP and ΦC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

  97. 97

    Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

  98. 98

    Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

  99. 99

    Pringle, N. P. et al. Fgfr3 expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development 130, 93–102 (2003).

  100. 100

    Shibata, T. et al. Glutamate transporter GLAST is expressed in the radial glia–astrocyte lineage of developing mouse spinal cord. J. Neurosci. 17, 9212–9219 (1997).

  101. 101

    Owada, Y., Yoshimoto, T. & Kondo, H. Spatio-temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains. J. Chem. Neuroanat. 12, 113–122 (1996).

  102. 102

    Stolt, C. C. et al. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 1677–1689 (2003).

  103. 103

    Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

  104. 104

    Fu, H. et al. A genome-wide screen for spatially restricted expression patterns identifies transcription factors that regulate glial development. J. Neurosci. 29, 11399–11408 (2009).

  105. 105

    Anthony, T. E. & Heintz, N. The folate metabolic enzyme ALDH1L1 is restricted to the midline of the early CNS, suggesting a role in human neural tube defects. J. Comp. Neurol. 500, 368–383 (2007).

Download references


We apologize to those whose work we could not cite owing to space limitations. We thank A. Molofsky for comments and M. Jenner for formatting the manuscript. Work in our laboratories is supported by grants from the National Institutes of Health (A.R.K. and D.H.R.) and the California Institute for Regenerative Medicine (A.R.K.). D.H.R. is a Howard Hughes Medical Institute investigator.

Author information

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rowitch, D., Kriegstein, A. Developmental genetics of vertebrate glial–cell specification. Nature 468, 214–222 (2010) doi:10.1038/nature09611

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.