Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b

Abstract

The carbon-to-oxygen ratio (C/O) in a planet provides critical information about its primordial origins and subsequent evolution. A primordial C/O greater than 0.8 causes a carbide-dominated interior, as opposed to the silicate-dominated composition found on Earth1; the atmosphere can also differ from those in the Solar System1,2. The solar C/O is 0.54 (ref. 3). Here we report an analysis of dayside multi-wavelength photometry4,5 of the transiting hot-Jupiter WASP-12b (ref. 6) that reveals C/O ≥ 1 in its atmosphere. The atmosphere is abundant in CO. It is depleted in water vapour and enhanced in methane, each by more than two orders of magnitude compared to a solar-abundance chemical-equilibrium model at the expected temperatures. We also find that the extremely irradiated atmosphere (T > 2,500 K) of WASP-12b lacks a prominent thermal inversion (or stratosphere) and has very efficient day–night energy circulation. The absence of a strong thermal inversion is in stark contrast to theoretical predictions for the most highly irradiated hot-Jupiter atmospheres7,8,9.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Observations and model spectra for dayside thermal emission of WASP-12b.
Figure 2: Constraints on the atmospheric composition of WASP-12b.
Figure 3: Thermal profiles of WASP-12b.

References

  1. Bond, J. C., O’Brien, D. P. & Lauretta, D. S. The compositional diversity of extrasolar planets. I. In situ simulations. Astrophys. J. 715, 1050–1070 (2010)

    ADS  CAS  Article  Google Scholar 

  2. Kuchner, M. & Seager, S. Extrasolar carbon planets. Preprint at 〈http://arxiv.org/abs/astro-ph/0504214〉 (2005)

  3. Asplund, M., Grevesse, N. & Sauval, A. in. Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis (eds Barnes, T. G. III & Bash, F. N.) 25–38 (ASP Conf. Ser. 336, 2005)

    Google Scholar 

  4. Campo, C. et al. On the orbit of exoplanet WASP-12b. Astrophys. J. (in the press). Preprint at 〈http://arxiv.org/abs/1003.2763〉 (2010)

  5. Croll, B. et al. Near-infrared thermal emission from WASP-12b: detections of the secondary eclipse in Ks, H & J. Astrophys. J. (in the press). Preprint at 〈http://arxiv.org/abs/1009.0071〉 (2010)

  6. Hebb, L. et al. 2009, WASP-12b: the hottest transiting extrasolar planet yet discovered. Astrophys. J. 693, 1920–1928 (2009)

    ADS  CAS  Article  Google Scholar 

  7. Fortney, J. J., Lodders, K., Marley, M. S. & Freedman, R. S. A unified theory for the atmospheres of the hot and very hot Jupiters: two classes of irradiated atmospheres. Astrophys. J. 678, 1419–1435 (2008)

    ADS  CAS  Article  Google Scholar 

  8. Knutson, H. A., Howard, A. W. & Isaacson, H. A correlation between stellar activity and hot Jupiter emission spectra. Astrophys. J. 720, 1569–1576 (2010)

    ADS  CAS  Article  Google Scholar 

  9. Zahnle, K. et al. Atmospheric sulfur photochemistry on hot Jupiters. Astrophys. J. 701, L20–L24 (2009)

    ADS  CAS  Article  Google Scholar 

  10. Werner, M. W. et al. The Spitzer Space Telescope mission. Astrophys. J. Suppl. Ser. 154, 1–9 (2004)

    ADS  Article  Google Scholar 

  11. Madhusudhan, N. & Seager, S. A temperature and abundance retrieval method for exoplanet atmospheres. Astrophys. J. 707, 24–39 (2009)

    ADS  CAS  Article  Google Scholar 

  12. Burrows, A., Budaj, J. & Hubeny, I. Theoretical spectra and light curves of close-in extrasolar giant planets and comparison with data. Astrophys. J. 678, 1436–1457 (2008)

    ADS  CAS  Article  Google Scholar 

  13. Gilks, W. R., Richardson, S. & Spiegelhalter, D. J. (eds) Markov Chain Monte Carlo in Practice (Chapman & Hall, 1996)

    MATH  Google Scholar 

  14. Swain, M. R. et al. Molecular signatures in the near-infrared dayside spectrum of HD 189733b. Astrophys. J. 690, L114–L117 (2009)

    ADS  CAS  Article  Google Scholar 

  15. Lodders, K. & Fegley, B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen. Icarus 155, 393–424 (2002)

    ADS  CAS  Article  Google Scholar 

  16. Burrows, A. & Sharp, C. M. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999)

    ADS  CAS  Article  Google Scholar 

  17. Spiegel, D. S., Silverio, K. & Burrows, A. Can TiO explain thermal inversions in the upper atmospheres of irradiated giant planets? Astrophys. J. 699, 1487–1500 (2009)

    ADS  CAS  Article  Google Scholar 

  18. Atreya, S. K. & Wong, A. S. Coupled clouds and chemistry of the giant planets—a case for multiprobes. Space Sci. Rev. 116, 121–136 (2005)

    ADS  CAS  Article  Google Scholar 

  19. Owen, T. et al. A low-temperature origin for the planetesimals that formed Jupiter. Nature 402, 269–270 (1999)

    ADS  CAS  Article  Google Scholar 

  20. Seager, S. et al. On the dayside thermal emission of hot Jupiters. Astrophys. J. 632, 1122–1131 (2005)

    ADS  CAS  Article  Google Scholar 

  21. Yung, Y. & DeMore, W. B. Photochemistry of Planetary Atmospheres (Oxford University Press, 1999)

    Google Scholar 

  22. Hubeny, I. & Burrows, A. &. Sudarsky, D. A possible bifurcation in atmospheres of strongly irradiated stars and planets. Astrophys. J. 594, 1011–1018 (2003)

    ADS  CAS  Article  Google Scholar 

  23. Fossati, L. et al. A detailed spectropolarimetric analysis of the planet-hosting star WASP-12. Astrophys. J. 720, 872–886 (2010)

    ADS  CAS  Article  Google Scholar 

  24. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996)

    ADS  Article  Google Scholar 

  25. Lodders, K. Jupiter formed with more tar than ice. Astrophys. J. 611, 587–597 (2004)

    ADS  CAS  Article  Google Scholar 

  26. Fortney, J. J. & Marley, M. S. &. Barnes, J. W. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007)

    ADS  CAS  Article  Google Scholar 

  27. Line, M. R., Liang, M. C. & Yung, Y. L. High-temperature photochemistry in the atmosphere of HD 189733b. Astrophys. J. 717, 496–502 (2010)

    ADS  CAS  Article  Google Scholar 

  28. Cushing, M. C., Rayner, J. T. & Vacca, W. D. An infrared spectroscopic sequence of M, L, and T dwarfs. Astrophys. J. 623, 1115–1140 (2005)

    ADS  CAS  Article  Google Scholar 

  29. Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. Preprint at 〈http://arxiv.org/abs/astro-ph/0405087〉 (2004)

  30. Lopez-Morales, M. et al. Day-side z′-band emission and eccentricity of WASP-12b. Astrophys. J. 716, L36–L40 (2010)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the authors of ref. 5 for sharing their ground-based observations before publication, and Thomas J. Loredo for discussions. N.M. thanks S. Seager for financial support during his stay at MIT, where most of the modelling work was carried out. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.

Author information

Authors and Affiliations

Authors

Contributions

N.M. conducted the atmospheric modelling and wrote the paper with input on both from J.H.; J.H. and P.J.W. led the observing proposals, data from which have been interpreted in this work; J.H., J.B. and C.J.C. designed the observations with input from P.J.W., D.R.A., A.C.-C., L.H., C.H., P.F.L.M., D.P. and R.G.W.; J.H., K.B.S., S.N., C.J.C., D.D., J.B., R.A.H., N.B.L., D.R.A., A.C.-C., C.B.T.B. and W.C.B. analysed the Spitzer data.

Corresponding author

Correspondence to Nikku Madhusudhan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1 and legend and Supplementary Information and Data about the Atmospheric Model and Parameter Space Exploration. (PDF 401 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Madhusudhan, N., Harrington, J., Stevenson, K. et al. A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature 469, 64–67 (2011). https://doi.org/10.1038/nature09602

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09602

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing