Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x

Abstract

Doped Mott insulators have a strong propensity to form patterns of holes and spins often referred to as stripes1,2,3,4,5. In copper oxides, doping also gives rise to the pseudogap state6, which can be transformed into a high-temperature superconducting state with sufficient doping or by reducing the temperature. A long-standing issue has been the interplay between the pseudogap, which is generic to all hole-doped copper oxide superconductors, and stripes, whose static form occurs in only one family of copper oxides over a narrow range of the phase diagram2,7. Here we report observations of the spatial reorganization of electronic states with the onset of the pseudogap state in the high-temperature superconductor Bi2Sr2CaCu2O8+x, using spectroscopic mapping with a scanning tunnelling microscope. We find that the onset of the pseudogap phase coincides with the appearance of electronic patterns that have the predicted characteristics of fluctuating stripes8. As expected, the stripe patterns are strongest when the hole concentration in the CuO2 planes is close to 1/8 (per copper atom)2,3,4,5,8. Although they demonstrate that the fluctuating stripes emerge with the onset of the pseudogap state and occur over a large part of the phase diagram, our experiments indicate that the stripes are a consequence of pseudogap behaviour rather than its cause.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electronic modulations in Bi2Sr2(Ca,Dy)Cu2O8+ x.
Figure 2: Impurity-induced interference versus incipient order.
Figure 3: Phase diagrams.
Figure 4: Spatial correlation of the modulation at Q* with the pseudogap.

Similar content being viewed by others

References

  1. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and the magnetism of high-T c oxides. Phys. Rev. B 40, 7391–7394 (1989)

    Article  ADS  CAS  Google Scholar 

  2. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995)

    Article  ADS  Google Scholar 

  3. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    Article  ADS  CAS  Google Scholar 

  4. White, S. R. & Scalapino, D. J. Density matrix renormalization group study of the striped phase in the 2D t-J model. Phys. Rev. Lett. 80, 1272–1275 (1998)

    Article  ADS  CAS  Google Scholar 

  5. Vojta, M. Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity. Adv. Phys. 58, 699–820 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Abbamonte, P. et al. Spatially modulated ‘Mottness’ in La2−x Ba x CuO4 . Nature Phys. 1, 155–158 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science 297, 1148–1151 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Howald, C., Eisaki, H., Kaneko, N. & Kapitulnik, A. Coexistence of periodic modulation of quasiparticle states and superconductivity in Bi2Sr2CaCu2O8+δ . Proc. Natl Acad. Sci. USA 100, 9705–9709 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Vershinin, M. et al. Local ordering in the pseudogap state of the high-T c superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Fang, A., Howald, C., Kaneko, N., Greven, M. & Kapitulnik, A. Periodic coherence-peak height modulations in superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. B 70, 214514 (2004)

    Article  ADS  Google Scholar 

  13. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Wise, W. D. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys. 4, 696–699 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ . Nature 454, 1072–1078 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Coleman, R. V. Dai, Z., McNairy, W. W., Slough, C. G. & Wang, C. in Methods of Experimental Physics Vol. 27 (eds Stroscio, J. A. & Kaiser, W. J.) 349–425 (Academic Press, 1993)

    Google Scholar 

  17. Hanaguri, T. et al. Quasiparticle interference and superconducting gap in Ca2−x Na x CuO2Cl2 . Nature Phys. 3, 865–871 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Wise, W. D. et al. Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor. Nature Phys. 5, 213–216 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-T c copper-oxide pseudogap states. Nature 466, 347–351 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Chatterjee, U. et al. Nondispersive Fermi arcs and the absence of charge ordering in the pseudogap phase of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 96, 107006 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Xu, G. et al. Testing the itinerancy of spin dynamics in superconducting Bi2Sr2CaCu2O8+δ . Nature Phys. 5, 642–646 (2009)

    Article  ADS  CAS  Google Scholar 

  22. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-T c superconductor. Nature 463, 519–522 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Hackl, A., Vojta, M. & Sachdev, S. Quasiparticle Nernst effect in stripe-ordered cuprates. Phys. Rev. B 81, 045102 (2010)

    Article  ADS  Google Scholar 

  24. Hashimoto, M. et al. Particle–hole symmetry breaking in the pseudogap state of Bi2201. Nature Phys. 6, 414–418 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Lee, J. et al. Spectroscopic fingerprint of phase-incoherent superconductivity in the underdoped Bi2Sr2CaCu2O8+δ . Science 325, 1099–1103 (2009)

    Article  ADS  CAS  Google Scholar 

  26. Wang, Y., Li, L. & Ong, N. P. Nernst effect in high-T c superconductors. Phys. Rev. B 73, 024510 (2006)

    Article  ADS  Google Scholar 

  27. Li, L. et al. Diamagnetism and Cooper pairing above T c in cuprates. Phys. Rev. B 81, 054510 (2010)

    Article  ADS  Google Scholar 

  28. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Gomes, K. K. et al. Visualizing pair formation on the atomic scale in the high-T c superconductor Bi2Sr2CaCu2O8+δ . Nature 447, 569–572 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Wulin, D., He, Y., Chien, C.-C., Morr, D. K. & Levin, K. Model for the temperature dependence of the quasiparticle interference pattern in the measured scanning tunneling spectra of underdoped cuprate superconductors. Phys. Rev. B 80, 134504 (2009)

    Article  ADS  Google Scholar 

  31. Robertson, J. A., Kivelson, S. A., Fradkin, E., Fang, A. C. & Kapitulnik, A. Distinguishing patterns of charge order: stripes or checkerboards. Phys. Rev. B 74, 134507 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with P. W. Anderson, D. Huse, S. Kivelson, E. Fradkin, N. P. Ong and A. Pasupathy. This work was primarily supported by grant from the DOE-BES. The instrumentation and infrastructure at the Princeton Nanoscale Microscopy Laboratory are also supported by grants from the NSF-DMR, the NSF-MRSEC programme, through the Princeton Centre for Complex Materials, and the W. M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.V.P., E.H.d.S.N., P.A. and A.P. performed the STM measurements; C.V.P. and P.A. analysed the STM data; S.O., J.W., Z.X. and G.G. prepared the crystals; A.Y. supervised; and A.Y., C.V.P., E.H.d.S.N. and P.A. wrote the manuscript.

Corresponding author

Correspondence to Ali Yazdani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Text, Supplementary Figures 1-6 and additional references. (PDF 1440 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, C., Aynajian, P., da Silva Neto, E. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x. Nature 468, 677–680 (2010). https://doi.org/10.1038/nature09597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09597

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing