Experimental niche evolution alters the strength of the diversity–productivity relationship


The relationship between biodiversity and ecosystem functioning (BEF) has become a cornerstone of community and ecosystem ecology1,2,3 and an essential criterion for making decisions in conservation biology and policy planning4,5. It has recently been proposed that evolutionary history should influence the BEF relationship because it determines species traits and, thus, species’ ability to exploit resources6,7. Here we test this hypothesis by combining experimental evolution with a BEF experiment. We isolated 20 bacterial strains from a marine environment and evolved each to be generalists or specialists8. We then tested the effect of evolutionary history on the strength of the BEF relationship with assemblages of 1 to 20 species constructed from the specialists, generalists and ancestors9. Assemblages of generalists were more productive on average because of their superior ability to exploit the environmental heterogeneity10. The slope of the BEF relationship was, however, stronger for the specialist assemblages because of enhanced niche complementarity. These results show how the BEF relationship depends critically on the legacy of past evolutionary events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Theoretical predictions of the effect of niche specialization on the strength of the BEF relationship.
Figure 2: Evolutionary treatments affect the strength of the biodiversity–productivity relationships.
Figure 3: The relationship between NDI and ecosystem functioning.


  1. 1

    Kinzig, A. P., Pacala, S. & Tilman, G. D. (eds) The Functional Consequences of Biodiversity: Empirical Progress and Theoretical Extensions (Princeton Univ. Press, 2002)

    Google Scholar 

  2. 2

    Loreau, M., Naeem, S. & Inchausti, P. (eds) Biodiversity and Ecosystem Functioning: Synthesis and Perspectives (Oxford Univ. Press, 2002)

    Google Scholar 

  3. 3

    Naeem, S., et al. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (Oxford Univ. Press, 2009)

    Google Scholar 

  4. 4

    Srivastava, D. S. & Vellend, M. Biodiversity-ecosystem function research: is it relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294 (2005)

    Article  Google Scholar 

  5. 5

    Duffy, J. E. Why biodiversity is important to the functioning of real-world ecosystems. Front. Ecol. Environ. 7, 437–444 (2009)

    Article  Google Scholar 

  6. 6

    Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17012–17017 (2008)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4, e5695 (2009)

    ADS  Article  Google Scholar 

  8. 8

    Barrett, R. D. H., MacLean, R. C. & Bell, G. Experimental evolution of Pseudomonas fluorescens in simple and complex environments. Am. Nat. 166, 470–480 (2005)

    Article  Google Scholar 

  9. 9

    Bell, T. et al. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Loreau, M. Microbial diversity, producer-decomposer interactions and ecosystem processes: a theoretical model. Proc. R. Soc. Lond. B 268, 303–309 (2001)

    CAS  Article  Google Scholar 

  11. 11

    Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Diaz, S. & Cabido, M. Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001)

    Article  Google Scholar 

  14. 14

    Reiss, J., Bridle, J. R., Montoya, J. M. & Woodward, G. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24, 505–514 (2009)

    Article  Google Scholar 

  15. 15

    Venail, P. A. et al. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. Nature 452, 210–214 (2008)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Levins, R. Evolution in Changing Environments: Some Theoretical Considerations (Princeton Univ. Press, 1968)

    Google Scholar 

  17. 17

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988)

    Article  Google Scholar 

  18. 18

    Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002)

    Article  Google Scholar 

  19. 19

    MacLean, R. C. Adaptive radiation in microbial microcosms. J. Evol. Biol. 18, 1376–1386 (2005)

    Article  Google Scholar 

  20. 20

    Buckling, A., Maclean, R. C., Brockhurst, M. A. & Colegrave, N. The Beagle in a bottle. Nature 457, 824–829 (2009)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Stachowicz, J. J., Graham, M., Bracken, M. E. S. & Szoboszlai, A. I. Diversity enhances cover and stability of seaweed assemblages: the role of heterogeneity and time. Ecology 89, 3008–3019 (2008)

    Article  Google Scholar 

  24. 24

    MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens . Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Salles, J. F., Poly, F., Schmid, B. & Le Roux, X. Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology 90, 3324–3332 (2009)

    Article  Google Scholar 

  26. 26

    Bell, T. et al. A linear model method for biodiversity-ecosystem functioning experiments. Am. Nat. 174, 836–849 (2009)

    PubMed  Google Scholar 

  27. 27

    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Abrams, P. A. Adaptive change in the resource-exploitation traits of a generalist consumer: the evolution and coexistence of generalists and specialists. Evolution 60, 427–439 (2006)

    PubMed  Google Scholar 

  29. 29

    Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006)

    Article  Google Scholar 

  30. 30

    Bell, T. et al. in Biodiversity, Ecosystem Functioning and Human Well-being (eds Naeem, S. et al.) 121–133 (Oxford Univ. Press, 2009)

    Google Scholar 

  31. 31

    Lane, D. J. in Nucleic Acid Techniques in Bacterial Systematics (eds Stackebrandt, E. & Goodfellow, M. ) 115–147 (Wiley, 1991)

    Google Scholar 

  32. 32

    Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998)

    CAS  Article  Google Scholar 

  33. 33

    Ashelford, K. E. et al. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microbiol. 72, 5734–5741 (2006)

    CAS  Article  Google Scholar 

  34. 34

    Maidak, B. L. et al. A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 27, 171–173 (1999)

    CAS  Article  Google Scholar 

  35. 35

    Pruesse, E. et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196 (2007)

    CAS  Article  Google Scholar 

  36. 36

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    CAS  Article  Google Scholar 

  37. 37

    Bochner, B. R. Sleuthing out bacterial identities. Nature 339, 157–158 (1989)

    ADS  CAS  Article  Google Scholar 

  38. 38

    Bouvier, T., del Giorgio, P. A. & Gasol, J. M. A comparative study of the cytometric characteristics of high and low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environ. Microbiol. 9, 2050–2066 (2007)

    CAS  Article  Google Scholar 

Download references


We thank T. Barraclough, G. Bell, M. Loreau, R. C. MacLean and A. Paquette for comments on earlier versions of the manuscript. This work was supported by a fellowship from the Natural Sciences and Engineering Research Council of Canada and a research grant from the Canada Research Chair Program, to D.G., and research grant ANR-09-JCJC-0110-01, to N.M.

Author information




D.G., T. Bell, C.B., T. Bouvier, T.P., P.V. and N.M. designed the research; D.G., C.B., T.P., P.V., T. Bell and N.M. conducted the research; and D.G., T. Bell and N.M. contributed to the model, analytical tools and wrote the manuscript. D.G., T. Bell, C.B., T. Bouvier, T.P., P.V. and N.M. edited the manuscript.

Corresponding authors

Correspondence to Dominique Gravel or Nicolas Mouquet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Material 1 - 9 which includes Supplementary Data and Methods, additional references, Supplementary Figures and Supplementary Tables. (PDF 3369 kb)

Supplementary Data 1

This file contains the Supplementary Data. (TXT 4 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gravel, D., Bell, T., Barbera, C. et al. Experimental niche evolution alters the strength of the diversity–productivity relationship. Nature 469, 89–92 (2011). https://doi.org/10.1038/nature09592

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing