Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’

Abstract

Computation underlies the organization of cells into higher-order structures, for example during development or the spatial association of bacteria in a biofilm1,2,3. Each cell performs a simple computational operation, but when combined with cell–cell communication, intricate patterns emerge. Here we study this process by combining a simple genetic circuit with quorum sensing to produce more complex computations in space. We construct a simple NOR logic gate in Escherichia coli by arranging two tandem promoters that function as inputs to drive the transcription of a repressor. The repressor inactivates a promoter that serves as the output. Individual colonies of E. coli carry the same NOR gate, but the inputs and outputs are wired to different orthogonal quorum-sensing ‘sender’ and ‘receiver’ devices4,5. The quorum molecules form the wires between gates. By arranging the colonies in different spatial configurations, all possible two-input gates are produced, including the difficult XOR and EQUALS functions. The response is strong and robust, with 5- to >300-fold changes between the ‘on’ and ‘off’ states. This work helps elucidate the design rules by which simple logic can be harnessed to produce diverse and complex calculations by rewiring communication between cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The genetic NOR gate.
Figure 2: Input modularity of the gates.
Figure 3: Construction of an XOR gate by programming communication between colonies on a plate.
Figure 4: Construction of all 16 two-input Boolean logic gates.

Similar content being viewed by others

References

  1. Neumann, J. V. The General and Logical Theory of Automata (Wiley, 1951)

    Google Scholar 

  2. Turing, A. M. The chemical basis of morphogenesis. 1953. Bull. Math. Biol. 52, 119–152 (discussion), 153–197 (1990)

    Article  Google Scholar 

  3. Wolfram, S. A New Kind of Science 23–113 (Wolfram Media, 2002)

    MATH  Google Scholar 

  4. Brenner, K., Karig, D. K., Weiss, R. & Arnold, F. H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc. Natl Acad. Sci. USA 104, 17300–17304 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Li, F., Long, T., Lu, Y., Ouyang, Q. & Tang, C. The yeast cell-cycle network is robustly designed. Proc. Natl Acad. Sci. USA 101, 4781–4786 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Niklas, K. J. The bio-logic and machinery of plant morphogenesis. Am. J. Bot. 90, 515–525 (2003)

    Article  CAS  Google Scholar 

  8. Morris, M. K., Saez-Rodriguez, J., Sorger, P. K. & Lauffenburger, D. A. Logic-based models for the analysis of cell signaling networks. Biochemistry 49, 3216–3224 (2010)

    Article  CAS  Google Scholar 

  9. Mayo, A. E., Setty, Y., Shavit, S., Zaslaver, A. & Alon, U. Plasticity of the cis-regulatory input function of a gene. PLoS Biol. 4, e45 (2006)

    Article  Google Scholar 

  10. Anderson, J. C., Voigt, C. A. & Arkin, A. P. Environmental signal integration by a modular AND gate. Mol. Syst. Biol. 3, 133 (2007)

    Article  Google Scholar 

  11. Guet, C. C., Elowitz, M. B., Hsing, W. & Leibler, S. Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nature Biotechnol. 25, 795–801 (2007)

    Article  CAS  Google Scholar 

  13. Weber, W. et al. A synthetic mammalian gene circuit reveals antituberculosis compounds. Proc. Natl Acad. Sci. USA 105, 9994–9998 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Ellis, T., Wang, X. & Collins, J. J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnol. 27, 465–471 (2009)

    Article  CAS  Google Scholar 

  15. Lou, C. et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol. Syst. Biol. 6, 350 (2010)

    Article  Google Scholar 

  16. Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009)

    Article  Google Scholar 

  17. Friedland, A. E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating positive feedback circuit. Nature Chem. Biol. 5, 842–848 (2009)

    Article  CAS  Google Scholar 

  19. Scharle, T. W. Axiomatization of propositional calculus with Sheffer functors. Notre Dame J. Formal Logic 6, 209–217 (1965)

    Article  MathSciNet  Google Scholar 

  20. Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Sneppen, K. et al. A mathematical model for transcriptional interference by RNA polymerase traffic in Escherichia coli . J. Mol. Biol. 346, 399–409 (2005)

    Article  CAS  Google Scholar 

  22. Pesci, E. C., Pearson, J. P., Seed, P. C. & Iglewski, B. H. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179, 3127–3132 (1997)

    Article  CAS  Google Scholar 

  23. Karig, D. & Weiss, R. Signal-amplifying genetic circuit enables in vivo observation of weak promoter activation in the Rhl quorum sensing system. Biotechnol. Bioeng. 89, 709–718 (2005)

    Article  CAS  Google Scholar 

  24. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Katz, R. H. & Borriello, G. Contemporary Logic Design 141–146 (Prentice Hall, 1994)

    Google Scholar 

  27. Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010)

    Article  ADS  CAS  Google Scholar 

  28. Clancy, K. & Voigt, C. A. Programming cells: towards an automated ‘genetic compiler’. Curr. Opin. Biotechnol. 21, 572–581 (2010)

    Article  CAS  Google Scholar 

  29. Ilachinski, A. Cellular Automata: A Discrete Universe 1–18 (World Scientific, 2001)

    Book  Google Scholar 

  30. Raju, B. S. & Mullick, S. K. Programmable cellular arrays. Int. J. Control 14, 1041–1061 (1971)

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Mulyasasmita and K. Temme for critical discussions. This work was supported by the National Science Foundation (SynBERC, NSF#0943385 and NSF Sandpit CCF-0943385) and the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Contributions

A.T. designed and performed the experiments, analysed the data and wrote the manuscript. J.J.T. designed experiments and edited the manuscript. C.A.V. designed experiments, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Christopher A. Voigt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S11 with legends, Supplementary Table S1-S5, Supplementary Discussions, a List of Strains, Plasmid Maps, and Supplementary References. (PDF 1665 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamsir, A., Tabor, J. & Voigt, C. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215 (2011). https://doi.org/10.1038/nature09565

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09565

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing