Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A dimorphic pheromone circuit in Drosophila from sensory input to descending output


Drosophila show innate olfactory-driven behaviours that are observed in naive animals without previous learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically programmed. Despite the numerical simplicity of the fly nervous system, features of the anatomical organization of the fly brain often confound the delineation of these circuits. Here we identify a neural circuit responsive to cVA, a pheromone that elicits sexually dimorphic behaviours1,2,3,4. We have combined neural tracing using an improved photoactivatable green fluorescent protein (PA-GFP) with electrophysiology, optical imaging and laser-mediated microlesioning to map this circuit from the activation of sensory neurons in the antennae to the excitation of descending neurons in the ventral nerve cord. This circuit is concise and minimally comprises four neurons, connected by three synapses. Three of these neurons are overtly dimorphic and identify a male-specific neuropil that integrates inputs from multiple sensory systems and sends outputs to the ventral nerve cord. This neural pathway suggests a means by which a single pheromone can elicit different behaviours in the two sexes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoactivation identifies dimorphic lateral horn neurons.
Figure 2: DC1 neurons synapse with DA1 PNs and are selectively tuned to cVA.
Figure 3: DC1 and descending neurons innervate Fru+ dimorphic neuropil.
Figure 4: DC1 neurons excite DN1, a cVA-responsive, male-specific descending neuron.


  1. Ejima, A. et al. Generalization of courtship learning in Drosophila is mediated by cis-vaccenyl acetate. Curr. Biol. 17, 599–605 (2007)

    Article  CAS  Google Scholar 

  2. Kurtovic, A., Widmer, A. & Dickson, B. J. A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542–546 (2007)

    Article  ADS  CAS  Google Scholar 

  3. Billeter, J. C., Atallah, J., Krupp, J. J., Millar, J. G. & Levine, J. D. Specialized cells tag sexual and species identity in Drosophila melanogaster . Nature 461, 987–991 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Wang, L. & Anderson, D. J. Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila . Nature 463, 227–231 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Bartelt, R. J., Schaner, A. M. & Jackson, L. L. Cis-vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster . J. Chem. Ecol. 11, 1747–1756 (1985)

    Article  CAS  Google Scholar 

  6. Clyne, P., Grant, A., O'Connell, R. & Carlson, J. R. Odorant response of individual sensilla on the Drosophila antenna. Invert. Neurosci. 3, 127–135 (1997)

    Article  CAS  Google Scholar 

  7. van der Goes van Naters, W. & Carlson, J. R. Receptors and neurons for fly odors in Drosophila . Curr. Biol. 17, 606–612 (2007)

    Article  CAS  Google Scholar 

  8. Couto, A., Alenius, M. & Dickson, B. J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005)

    Article  CAS  Google Scholar 

  9. Fishilevich, E. & Vosshall, L. B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005)

    Article  CAS  Google Scholar 

  10. Marin, E. C., Jefferis, G. S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)

    Article  CAS  Google Scholar 

  11. Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002)

    Article  CAS  Google Scholar 

  12. Jefferis, G. S. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007)

    Article  CAS  Google Scholar 

  13. Datta, S. R. et al. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirian, L. & Dickson, B. J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005)

    Article  CAS  Google Scholar 

  15. Manoli, D. S. et al. Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature 436, 395–400 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Kimura, K., Ote, M., Tazawa, T. & Yamamoto, D. Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature 438, 229–233 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Kimura, K., Hachiya, T., Koganezawa, M., Tazawa, T. & Yamamoto, D. Fruitless and doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron 59, 759–769 (2008)

    Article  CAS  Google Scholar 

  18. Ryner, L. C. et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079–1089 (1996)

    Article  CAS  Google Scholar 

  19. Demir, E. & Dickson, B. J. fruitless splicing specifies male courtship behavior in Drosophila . Cell 121, 785–794 (2005)

    Article  CAS  Google Scholar 

  20. Vrontou, E., Nilsen, S. P., Demir, E., Kravitz, E. A. & Dickson, B. J. fruitless regulates aggression and dominance in Drosophila . Nature Neurosci. 9, 1469–1471 (2006)

    Article  CAS  Google Scholar 

  21. Billeter, J. C. et al. Isoform-specific control of male neuronal differentiation and behavior in Drosophila by the fruitless gene. Curr. Biol. 16, 1063–1076 (2006)

    Article  CAS  Google Scholar 

  22. Chan, Y. B. & Kravitz, E. A. Specific subgroups of FruM neurons control sexually dimorphic patterns of aggression in Drosophila melanogaster . Proc. Natl Acad. Sci. USA 104, 19577–19582 (2007)

    Article  ADS  CAS  Google Scholar 

  23. Patterson, G. H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Shaner, N. C., Patterson, G. H. & Davidson, M. W. Advances in fluorescent protein technology. J. Cell Sci. 120, 4247–4260 (2007)

    Article  CAS  Google Scholar 

  25. Kazama, H. & Wilson, R. I. Homeostatic matching and nonlinear amplification at identified central synapses. Neuron 58, 401–413 (2008)

    Article  CAS  Google Scholar 

  26. Schlief, M. L. & Wilson, R. I. Olfactory processing and behavior downstream from highly selective receptor neurons. Nature Neurosci. 10, 623–630 (2007)

    Article  CAS  Google Scholar 

  27. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nature Methods 6, 875–881 (2009)

    Article  CAS  Google Scholar 

  28. Dulac, C. & Kimchi, T. Neural mechanisms underlying sex-specific behaviors in vertebrates. Curr. Opin. Neurobiol. 17, 675–683 (2007)

    Article  CAS  Google Scholar 

  29. Clyne, J. D. & Miesenbock, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila . Cell 133, 354–363 (2008)

    Article  CAS  Google Scholar 

  30. Crameri, A., Whitehorn, E. A., Tate, E. & Stemmer, W. P. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol. 14, 315–331 (1996)

    Article  CAS  Google Scholar 

  31. Pedelacq, J. D., Cabantous, S., Tran, T., Terwilliger, T. C. & Waldo, G. S. Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnol. 24, 79–88 (2006)

    Article  CAS  Google Scholar 

  32. Stocker, R. F., Heimbeck, G., Gendre, N. & de Belle, J. S. Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J. Neurobiol. 32, 443–456 (1997)

    Article  CAS  Google Scholar 

  33. Ito, K. et al. The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn. Mem. 5, 52–77 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank T. Jessell, C. Zuker and members of the Axel laboratory for discussion and comments on this manuscript; J. Flores for technical assistance; B. Dickson for reagents; P. Kisloff for assistance in the preparation of this manuscript; and M. Gutierrez and A. Nemes for general laboratory support. This work was funded in part by a grant from the Foundation for the National Institutes of Health through the Grand Challenges in Global Health Initiative. Further financial support was provided by the Helen Hay Whitney Foundation (V.R. and S.R.D.), the Burroughs Welcome Fund (S.R.D.) and the Howard Hughes Medical Institute (R.A. and L.L.L.).

Author information

Authors and Affiliations



V.R., S.R.D., M.L.V. and R.A. conceived of the project and contributed to its progression. V.R. performed all the experiments, with the early participation of M.L.V. S.R.D. developed new photoactivatable fluorophores. L.L.L. developed GCaMP3. J.F. performed immunochemistry. R.A. provided guidance and wrote the paper with V.R., S.R.D., M.L.V. and L.L.L.

Corresponding author

Correspondence to Richard Axel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-7 with legends. (PDF 5052 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruta, V., Datta, S., Vasconcelos, M. et al. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 468, 686–690 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing