Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic dissection of an amygdala microcircuit that gates conditioned fear

Abstract

The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ+ neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ neurons in CEl. Electrical silencing of PKC-δ+ neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEloff units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Characterization of CEl PKC-δ + neurons.
Figure 2: Transgenic targeting of PKC-δ + neurons.
Figure 3: CEl PKC-δ + neurons directly inhibit CEm output neurons.
Figure 4: PKC-δ + and PKC-δ make reciprocal inhibitory connections in CEl.
Figure 5: CEloff neurons are PKC-δ+.

References

  1. Davis, M., Walker, D. L. & Myers, K. M. Role of the amygdala in fear extinction measured with potentiated startle. Ann. NY Acad. Sci. 985, 218–232 (2003)

    CAS  Article  ADS  PubMed  Google Scholar 

  2. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000)

    CAS  Article  PubMed  Google Scholar 

  3. Paré, D., Quirk, G. J. & LeDoux, J. E. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92, 1–9 (2004)

    Article  PubMed  Google Scholar 

  4. Pitkänen, A., Savander, V. & LeDoux, J. E. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 20, 517–523 (1997)

    Article  PubMed  Google Scholar 

  5. Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nature Rev. Neurosci. 5, 844–852 (2004)

    CAS  Article  Google Scholar 

  6. Medina, J. F., Repa, J. C., Mauk, M. D. & LeDoux, J. E. Parallels between cerebellum- and amygdala-dependent conditioning. Nature Rev. Neurosci. 3, 122–131 (2002)

    CAS  Article  Google Scholar 

  7. Cassell, M. D., Freedman, L. J. & Shi, C. The intrinsic organization of the central extended amygdala. Ann. NY Acad. Sci. 877, 217–241 (1999)

    CAS  Article  ADS  PubMed  Google Scholar 

  8. Cassell, M. D., Gray, T. S. & Kiss, J. Z. Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. J. Comp. Neurol. 246, 478–499 (1986)

    CAS  Article  PubMed  Google Scholar 

  9. Day, H. E. W., Curran, E. J., Watson, S. J. & Akil, H. Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1β. J. Comp. Neurol. 413, 113–128 (1999)

    CAS  Article  PubMed  Google Scholar 

  10. Marchant, N. J., Densmore, V. S. & Osborne, P. B. Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: evidence of two distinct endogenous opioid systems in the lateral division. J. Comp. Neurol. 504, 702–715 (2007)

    CAS  Article  PubMed  Google Scholar 

  11. Ehrlich, I. et al. Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771 (2009)

    CAS  Article  PubMed  Google Scholar 

  12. Huber, D., Veinante, P. & Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308, 245–248 (2005)

    CAS  Article  ADS  PubMed  Google Scholar 

  13. Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Lerchner, W. et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl channel. Neuron 54, 35–49 (2007)

    CAS  Article  PubMed  Google Scholar 

  15. Slimko, E. M., McKinney, S., Anderson, D. J., Davidson, N. & Lester, H. A. Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J. Neurosci. 22, 7373–7379 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature doi:10.1038/nature09559 (this issue).

  17. Day, H. E., Nebel, S., Sasse, S. & Campeau, S. Inhibition of the central extended amygdala by loud noise and restraint stress. Eur. J. Neurosci. 21, 441–454 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zirlinger, M. & Anderson, D. Molecular dissection of the amygdala and its relevance to autism. Genes Brain Behav. 2, 282–294 (2003)

    CAS  Article  PubMed  Google Scholar 

  19. Zirlinger, M., Kreiman, G. & Anderson, D. J. Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid subnuclei. Proc. Natl Acad. Sci. USA 98, 5270–5275 (2001)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Callaway, E. M. A molecular and genetic arsenal for systems neuroscience. Trends Neurosci. 28, 196–201 (2005)

    CAS  Article  PubMed  Google Scholar 

  21. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Zhang, F., Aravanis, A. M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nature Rev. Neurosci. 8, 577–581 (2007)

    CAS  Article  Google Scholar 

  23. Chieng, B. C., Christie, M. J. & Osborne, P. B. Characterization of neurons in the rat central nucleus of the amygdala: cellular physiology, morphology, and opioid sensitivity. J. Comp. Neurol. 497, 910–927 (2006)

    CAS  Article  PubMed  Google Scholar 

  24. Schiess, M. C., Callahan, P. M. & Zheng, H. Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro . J. Neurosci. Res. 58, 663–673 (1999)

    CAS  Article  PubMed  Google Scholar 

  25. Lopez de Armentia, M. & Sah, P. Firing properties and connectivity of neurons in the rat lateral central nucleus of the amygdala. J. Neurophysiol. 92, 1285–1294 (2004)

    Article  PubMed  Google Scholar 

  26. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)

    CAS  Article  ADS  PubMed  Google Scholar 

  27. Li, P., Slimko, E. M. & Lester, H. A. Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. FEBS Lett. 528, 77–82 (2002)

    CAS  Article  PubMed  Google Scholar 

  28. Wagstaff, M. J. et al. Gene transfer using a disabled herpes virus vector containing the EMCV IRES allows multiple gene expression in vitro and in vivo . Gene Ther. 5, 1566–1570 (1998)

    CAS  Article  PubMed  Google Scholar 

  29. Veinante, P. & Freund-Mercier, M. J. Branching patterns of central amygdaloid nucleus afferents in the rat: single axon reconstructions. Ann. NY Acad. Sci. 985, 552–553 (2003)

    Article  ADS  Google Scholar 

  30. Sun, N., Yi, H. & Cassell, M. D. Evidence for a GABAergic interface between cortical afferents and brainstem projection neurons in the rat central extended amygdala. J. Comp. Neurol. 340, 43–64 (1994)

    CAS  Article  PubMed  Google Scholar 

  31. Gautron, L., Lazarus, M., Scott, M. M., Saper, C. B. & Elmquist, J. K. Identifying the efferent projections of leptin-responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. J. Comp. Neurol. 518, 2090–2108 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Oca, B. M., De Cola, J. P., Maren, S. & Fanselow, M. S. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J. Neurosci. 18, 3426–3432 (1998)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Kim, J. J., Rison, R. A. & Fanselow, M. S. Effects of amygdala, hippocampus, and periaqueductal grady lesions on short- and long-term contextual fear. Behav. Neurosci. 107, 1093–1098 (1993)

    CAS  Article  PubMed  Google Scholar 

  34. LeDoux, J. E., Iwata, J., Cicchetti, P. & Reis, D. J. Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J. Neurosci. 8, 2517–2529 (1988)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007)

    CAS  Article  ADS  PubMed  Google Scholar 

  37. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols 5, 247–254 (2010)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007)

    CAS  Article  PubMed  Google Scholar 

  39. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007)

    CAS  Article  PubMed  Google Scholar 

  41. Slimko, E. M. & Lester, H. A. Codon optimization of Caenorhabditis elegans GluCl ion channel genes for mammalian cells dramatically improves expression levels. J. Neurosci. Methods 124, 75–81 (2003)

    CAS  Article  PubMed  Google Scholar 

  42. Edwards, A. L. Experimental Design in Psychological Research 4th edn, 249–251 (Holt, Reinhard & Winston, 1972)

    Google Scholar 

  43. Wickens, J. R., Arbuthnott, G. W. & Shindou, T. Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. Prog. Brain Res. 160, 313–329 (2007)

    CAS  Article  PubMed  Google Scholar 

  44. Gozzi, A. et al. A neural switch for active and passive fear. Neuron 67, 656–666 (2010)

    CAS  Article  PubMed  Google Scholar 

  45. Tsetsenis, T., Ma, X. H., Lo Iacono, L., Beck, S. G. & Gross, C. Suppression of conditioning to ambiguous cues by pharmacogenetic inhibition of the dentate gyrus. Nature Neurosci. 10, 896–902 (2007)

    CAS  Article  PubMed  Google Scholar 

  46. Ressler, K. J. & Mayberg, H. S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nature Neurosci. 10, 1116–1124 (2007)

    CAS  Article  PubMed  Google Scholar 

  47. Gong, S., Yang, X. W., Li, C. & Heintz, N. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res. 12, 1992–1998 (2002)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Atasoy, D., Aponte, Y., Su, H. H. & Sternson, S. M. A. FLEX switch targets Channelrhodopsin-2 to multiple cell types for imaging and long-range circuit mapping. J. Neurosci. 28, 7025–7030 (2008)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Seidler, B. et al. A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors. Proc. Natl Acad. Sci. USA 105, 10137–10142 (2008)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. Furler, S., Paterna, J. C., Weibel, M. & Bueler, H. Recombinant AAV vectors containing the foot and mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia nigra neurons. Gene Ther. 8, 864–873 (2001)

    CAS  Article  PubMed  Google Scholar 

  51. Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nature Biotechnol. 22, 589–594 (2004)

    CAS  Article  Google Scholar 

  52. Etessami, R. et al. Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J. Gen. Virol. 81, 2147–2153 (2000)

    CAS  Article  PubMed  Google Scholar 

  53. Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008)

    CAS  Article  ADS  PubMed  Google Scholar 

  54. Nicolelis, M. A. et al. Chronic, multisite, multielectrode recordings in macaque monkeys. Proc. Natl Acad. Sci. USA 100, 11041–11046 (2003)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Heinz and X. Gong for generating BAC transgenic mice; C. Saper for providing the Cre-dependent hrGFP AAV construct; C. Xiao for training in slice electrophysiology and preliminary experiments; H. Lester for advice on the GluCl system; L. van Tright for performing in situ hybridizations; W. Lerchner for providing a CAG-driven GluClβ construct; A. Chang for help with behavioural scoring; M. Martinez for tail genotyping; G. Mosconi for laboratory management; and J. Alex, R. Bayon and R. Sauza for animal care. This work was supported by NIH grant 1 R01 MH085082-01A1 and by funds from the Caltech ‘Conscious Mouse’ project. W.H. was supported by a fellowship of the Human Frontier Science Program and P.S.K. by the Jane Coffin Childs Memorial Fund for Medical Research. S.C. and A.L. were supported by the Novartis Research Foundation. D.J.A. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

W.H. initiated the project, generated BAC constructs, designed experiments, performed anatomical, viral injections and behavioural experiments, and wrote the manuscript. P.S.K. contributed to experimental design, performed viral injections, behavioural experiments, data analysis and interpretation. H.C. contributed to experimental design and performed viral injections and slice electrophysiology experiments, data analysis and interpretation. S.C. and A.L. designed, performed and interpreted in vivo recording experiments (Fig. 5). N.R.W. and E.M.C. performed rabies virus injection experiments. R.P. performed supplementary behavioural experiments and M.S.F. contributed to their interpretation and to statistical analysis. J.B. and H.-W.D. performed supplementary stereotaxic viral injection experiments. K.D. provided Cre-dependent ChR2 constructs and advice. D.J.A. conceived the project, contributed to experimental design and interpretation and wrote the manuscript. P.S.K., H.C. and S.C. contributed equally. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to David J. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-6, Supplementary Figures 1- 11 with legends, Supplementary Notes 1-3 and additional references. (PDF 2911 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haubensak, W., Kunwar, P., Cai, H. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010). https://doi.org/10.1038/nature09553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09553

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing