Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interdependence of behavioural variability and response to small stimuli in bacteria

This article has been updated

Abstract

The chemotaxis signalling network in Escherichia coli that controls the locomotion of bacteria is a classic model system for signal transduction1,2. This pathway modulates the behaviour of flagellar motors to propel bacteria towards sources of chemical attractants. Although this system relaxes to a steady state in response to environmental changes, the signalling events within the chemotaxis network are noisy and cause large temporal variations of the motor behaviour even in the absence of stimulus3. That the same signalling network governs both behavioural variability and cellular response raises the question of whether these two traits are independent. Here, we experimentally establish a fluctuation–response relationship in the chemotaxis system of living bacteria. Using this relationship, we demonstrate the possibility of inferring the cellular response from the behavioural variability measured before stimulus. In monitoring the pre- and post-stimulus switching behaviour of individual bacterial motors, we found that variability scales linearly with the response time for different functioning states of the cell. This study highlights that the fundamental relationship between fluctuation and response is not constrained to physical systems at thermodynamic equilibrium4 but is extensible to living cells5. Such a relationship not only implies that behavioural variability and cellular response can be coupled traits, but it also provides a general framework within which we can examine how the selection of a network design shapes this interdependence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: CCW interval lengths pre- and post-stimulus.
Figure 2: Relationship between response to stimulus and fluctuations before stimulus.
Figure 3: Low-frequency noise in non-stimulated cells.
Figure 4: Relationship between signalling noise and response time to a small external stimulus.

Change history

  • 09 December 2010

    The position of a sentence was changed in the first paragraph of the text.

References

  1. 1

    Bourret, R. B., Borkovich, K. A. & Simon, M. I. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu. Rev. Biochem. 60, 401–441 (1991)

    CAS  Article  Google Scholar 

  2. 2

    Bourret, R. B. & Stock, A. M. Molecular information processing: lessons from bacterial chemotaxis. J. Biol. Chem. 277, 9625–9628 (2002)

    CAS  Article  Google Scholar 

  3. 3

    Korobkova, E. A., Emonet, T., Park, H. & Cluzel, P. Hidden stochastic nature of a single bacterial motor. Phys. Rev. Lett. 96, 058105 (2006)

    ADS  Article  Google Scholar 

  4. 4

    Callen, H. B. & Welton, T. A. Irreversibility and generalized noise. Phys. Rev. 83, 34–40 (1951)

    ADS  MathSciNet  Article  Google Scholar 

  5. 5

    Prost, J., Joanny, J. F. & Parrondo, J. M. Generalized fluctuation-dissipation theorem for steady-state systems. Phys. Rev. Lett. 103, 090601 (2009)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bustamante, C., Macosko, J. C. & Wuite, G. J. L. Grabbing the cat by the tail: manipulating molecules one by one. Nature Rev. Mol. Cell Biol. 1, 130–136 (2000)

    CAS  Article  Google Scholar 

  7. 7

    Dorignac, J., Kalinowski, A., Erramilli, S. & Mohanty, P. Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition. Phys. Rev. Lett. 96, 186105 (2006)

    ADS  Article  Google Scholar 

  8. 8

    Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    CAS  Article  Google Scholar 

  10. 10

    Cugliandolo, L. F., Dean, D. S. & Kurchan, J. Fluctuation-dissipation theorems and entropy production in relaxational systems. Phys. Rev. Lett. 79, 2168–2171 (1997)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Chetrite, R., Falkovich, G. & Gawedzki, K. Fluctuation relations in simple examples of non-equilibrium steady states. J. Stat. Mech.-Theory E 2008, P08005 (2008)

    Article  Google Scholar 

  12. 12

    Speck, T. & Seifert, U. Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state. Europhys. Lett. 74, 391–396 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Berg, H. C. Motile behavior of bacteria. Phys. Today 53, 24–29 (2000)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Korobkova, E., Emonet, T., Vilar, J. M., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Cluzel, P., Surette, M. & Leibler, S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287, 1652–1655 (2000)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Sourjik, V. & Berg, H. C. Receptor sensitivity in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 99, 123–127 (2002)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Anderson, R. L. Distribution of the serial correlation coefficient. Ann. Math. Stat. 13, 1–13 (1942)

    MathSciNet  Article  Google Scholar 

  20. 20

    Ratnam, R. & Nelson, M. E. Nonrenewal statistics of electrosensory afferent spike trains: implications for the detection of weak sensory signals. J. Neurosci. 20, 6672–6683 (2000)

    CAS  Article  Google Scholar 

  21. 21

    Emonet, T. & Cluzel, P. Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 105, 3304–3309 (2008)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Shibata, T. & Fujimoto, K. Noisy signal amplification in ultrasensitive signal transduction. Proc. Natl Acad. Sci. USA 102, 331–336 (2005)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Bray, D., Levin, M. D. & Morton-Firth, C. J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Sourjik, V. & Berg, H. C. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441 (2004)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Rao, C. V., Wolf, D. M. & Arkin, A. P. Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Bialek, W. & Setayeshgar, S. Physical limits to biochemical signaling. Proc. Natl Acad. Sci. USA 102, 10040–10045 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Andrews, B. W., Yi, T. M. & Iglesias, P. A. Optimal noise filtering in the chemotactic response of Escherichia coli . PLOS Comput. Biol. 2, e154 (2006)

    ADS  Article  Google Scholar 

  28. 28

    Goldbeter, A. & Koshland, D. E. Jr. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981)

    ADS  MathSciNet  CAS  Article  Google Scholar 

  29. 29

    Detwiler, P. B., Ramanathan, S., Sengupta, A. & Shraiman, B. I. Engineering aspects of enzymatic signal transduction: photoreceptors in the retina. Biophys. J. 79, 2801–2817 (2000)

    CAS  Article  Google Scholar 

  30. 30

    Shinar, G. & Feinberg, M. Structural sources of robustness in biochemical reaction networks. Science 327, 1389–1391 (2010)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Parkinson, J. S. & Houts, S. E. Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J. Bacteriol. 151, 106–113 (1982)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997)

    CAS  Article  Google Scholar 

  33. 33

    Jasuja, R., Yu-Lin, Trentham, D. R. & Khan, S. Response tuning in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 96, 11346–11351 (1999)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Adler, J. A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli . J. Gen. Microbiol. 74, 77–91 (1973)

    CAS  Article  Google Scholar 

  35. 35

    Bainer, R., Park, H. & Cluzel, P. A high-throughput capillary assay for bacterial chemotaxis. J. Microbiol. Methods 55, 315–319 (2003)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by an NSF DMR award 0213745 to the Materials Research Science and Engineering Center at the University of Chicago, and NIH award R01AI059195-03 (to P.C.). W.P. and T.E. were supported by NSF CCF0829836, an Alfred P. Sloan Research Fellowship, and a National Academies Keck Futures Initiative award (to T.E.). J.F.M. was supported by NSF awards PHY-0852130 and DMR-0715099 and NIH grant 1U54CA143869-01. This work was also supported by the Chicago Biomedical Consortium with support from The Searle Funds at The Chicago Community Trust. D. Trentham supplied caged l-aspartate. We thank J. S. Parkinson for ΔCheB mutant strains RP4972 and RP4992. We thank T. Shimizu for discussions and sharing unpublished work. We thank H. Lee for help with the HPLC measurements. We thank J. Moffitt and K. Wood for comments on the manuscript and all members of the Cluzel laboratory for many discussions. W. Grus provided editorial assistance.

Author information

Affiliations

Authors

Contributions

P.C. conceived and designed the research. H.P. performed all the experiments. H.P., P.C., T.E., W.P. and J.F.M. analysed the data. H.P., P.C., J.F.M. and T.E. wrote the paper. C.C.G. constructed the pZE21-CheR plasmid.

Corresponding author

Correspondence to Philippe Cluzel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-9 with legends and additional references. (PDF 1313 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, H., Pontius, W., Guet, C. et al. Interdependence of behavioural variability and response to small stimuli in bacteria. Nature 468, 819–823 (2010). https://doi.org/10.1038/nature09551

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing