Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1

A Corrigendum to this article was published on 20 May 2015


Parkinson’s disease is a pervasive, ageing-related neurodegenerative disease the cardinal motor symptoms of which reflect the loss of a small group of neurons, the dopaminergic neurons in the substantia nigra pars compacta1 (SNc). Mitochondrial oxidant stress is widely viewed as being responsible for this loss2, but why these particular neurons should be stressed is a mystery. Here we show, using transgenic mice that expressed a redox-sensitive variant of green fluorescent protein targeted to the mitochondrial matrix, that the engagement of plasma membrane L-type calcium channels during normal autonomous pacemaking created an oxidant stress that was specific to vulnerable SNc dopaminergic neurons. The oxidant stress engaged defences that induced transient, mild mitochondrial depolarization or uncoupling. The mild uncoupling was not affected by deletion of cyclophilin D, which is a component of the permeability transition pore, but was attenuated by genipin and purine nucleotides, which are antagonists of cloned uncoupling proteins. Knocking out DJ-1 (also known as PARK7 in humans and Park7 in mice), which is a gene associated with an early-onset form of Parkinson’s disease, downregulated the expression of two uncoupling proteins (UCP4 (SLC25A27) and UCP5 (SLC25A14)), compromised calcium-induced uncoupling and increased oxidation of matrix proteins specifically in SNc dopaminergic neurons. Because drugs approved for human use can antagonize calcium entry through L-type channels, these results point to a novel neuroprotective strategy for both idiopathic and familial forms of Parkinson’s disease.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Calcium influx through L-type calcium channels during pacemaking increases mitochondrial oxidant stress in SNc dopaminergic neurons.
Figure 2: Oxidant stress is elevated in SNc dopaminergic neurons from DJ-1 knockout mice.
Figure 3: Mitochondrial flickering is dependent on superoxide production and recruitment of mitochondrial uncoupling proteins.
Figure 4: Loss of DJ-1 attenuated UCP-dependent flickering in mitochondrial membrane potential.


  1. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of disorders of the basal ganglia. Trends Neurosci. 18, 63–64 (1995)

    CAS  Article  Google Scholar 

  2. Schapira, A. H. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 7, 97–109 (2008)

    CAS  Article  Google Scholar 

  3. Puopolo, M., Raviola, E. & Bean, B. P. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J. Neurosci. 27, 645–656 (2007)

    CAS  Article  Google Scholar 

  4. Chan, C. S. et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447, 1081–1086 (2007)

    ADS  CAS  Article  Google Scholar 

  5. Khaliq, Z. M. & Bean, B. P. Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances. J. Neurosci. 30, 7401–7413 (2010)

    CAS  Article  Google Scholar 

  6. Guzman, J. N., Sanchez-Padilla, J., Chan, C. S. & Surmeier, D. J. Robust pacemaking in substantia nigra dopaminergic neurons. J. Neurosci. 29, 11011–11019 (2009)

    CAS  Article  Google Scholar 

  7. Dooley, C. T. et al. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 279, 22284–22293 (2004)

    CAS  Article  Google Scholar 

  8. Matlib, M. A. et al. Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J. Biol. Chem. 273, 10223–10231 (1998)

    CAS  Article  Google Scholar 

  9. Nicholls, D. G. & Ferguson, S. J. Bioenergetics 3 (Academic, 2002)

    Google Scholar 

  10. Kahle, P. J., Waak, J. & Gasser, T. DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic. Biol. Med. 47, 1354–1361 (2009)

    CAS  Article  Google Scholar 

  11. Ehrenberg, B., Montana, V., Wei, M. D., Wuskell, J. P. & Loew, L. M. Membrane potential can be determined in individual cells from the Nernstian distribution of cationic dyes. Biophys. J. 53, 785–794 (1988)

    CAS  Article  Google Scholar 

  12. Rasola, A. & Bernardi, P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12, 815–833 (2007)

    CAS  Article  Google Scholar 

  13. Krauss, S., Zhang, C. Y. & Lowell, B. B. The mitochondrial uncoupling-protein homologues. Nature Rev. Mol. Cell Biol. 6, 248–261 (2005)

    CAS  Article  Google Scholar 

  14. Brand, M. D. et al. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem. Soc. Symp. 71, 203–213 (2004)

    CAS  Article  Google Scholar 

  15. Andrews, Z. B. et al. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson’s disease. J. Neurosci. 25, 184–191 (2005)

    CAS  Article  Google Scholar 

  16. Zhang, C. Y. et al. Genipin inhibits UCP2-mediated proton leak and acutely reverses obesity- and high glucose-induced beta cell dysfunction in isolated pancreatic islets. Cell Metab. 3, 417–427 (2006)

    CAS  Article  Google Scholar 

  17. Echtay, K. S. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99 (2002)

    ADS  CAS  Article  Google Scholar 

  18. Papa, S. & Skulachev, V. P. Reactive oxygen species, mitochondria, apoptosis and aging. Mol. Cell. Biochem. 174, 305–319 (1997)

    CAS  Article  Google Scholar 

  19. Canet-Aviles, R. M. et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl Acad. Sci. USA 101, 9103–9108 (2004)

    ADS  CAS  Article  Google Scholar 

  20. Bonifati, V. et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset Parkinsonism. Science 299, 256–259 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Cookson, M. R. DJ-1, PINK1, and their effects on mitochondrial pathways. Mov. Disord. 25 (suppl. 1). S44–S48 (2010)

    Article  Google Scholar 

  22. Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genet. 38, 515–517 (2006)

    MathSciNet  CAS  Article  Google Scholar 

  23. Bender, A. et al. Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J. Neurol. 255, 1231–1235 (2008)

    Article  Google Scholar 

  24. Krishnan, K. J., Greaves, L. C., Reeve, A. K. & Turnbull, D. M. Mitochondrial DNA mutations and aging. Ann. NY Acad. Sci. 1100, 227–240 (2007)

    ADS  CAS  Article  Google Scholar 

  25. Nicholls, D. G. Oxidative stress and energy crises in neuronal dysfunction. Ann. NY Acad. Sci. 1147, 53–60 (2008)

    ADS  CAS  Article  Google Scholar 

  26. Eisenberg, M. J., Brox, A. & Bestawros, A. N. Calcium channel blockers: an update. Am. J. Med. 116, 35–43 (2004)

    CAS  Article  Google Scholar 

  27. Becker, C., Jick, S. S. & Meier, C. R. Use of antihypertensives and the risk of Parkinson disease. Neurology 70, 1438–1444 (2008)

    CAS  Article  Google Scholar 

  28. Ritz, B. et al. L-type calcium channel blockers and Parkinson disease in Denmark. Ann. Neurol. 67, 600–606, 10.1002/ana.21937 (2010)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Son, J. H. et al. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J. Neurosci. 19, 10–20 (1999)

    CAS  Article  Google Scholar 

  30. Bookout, A. L., Cummins, C. L., Mangelsdorf, D. J., Pesola, J. M. & Kramer, M. F. High-throughput real-time quantitative reverse transcription PCR. Curr. Protoc. Mol. Biol. Chapter 15, Unit 15 18. (2006)

  31. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C T method. Nature Protocols 3, 1101–1108 (2008)

    CAS  Article  Google Scholar 

  32. Tian, X., Kai, L., Hockberger, P. E., Wokosin, D. L. & Surmeier, D. J. MEF-2 regulates activity-dependent spine loss in striatopallidal medium spiny neurons. Mol. Cell. Neurosci. 44, 94–108 (2010)

    CAS  Article  Google Scholar 

  33. Fath, T., Ke, Y. D., Gunning, P., Gotz, J. & Ittner, L. M. Primary support cultures of hippocampal and substantia nigra neurons. Nature Protocols 4, 78–85 (2009)

    CAS  Article  Google Scholar 

Download references


We acknowledge the technical help of P. Hockberger, N. Schwarz, S. Ulrich, Y. Chen, C. S. Chan, D. Dryanovski and K. Saporito. We acknowledge S. Chan for supplying quantitative PCR primer sets. We acknowledge the gifts of DJ-1 knockout mice from T. and V. Dawson, Ucp2 knockout mice from D. Kong and B. Lowell, and cyclophilin D knockout mice from S. J. Korsmeyer. This work was supported by the Picower Foundation, the Hartman Foundation, the Falk Trust, the Parkinson’s Disease Foundation, NIH grants NS047085 (D.J.S.), NS 054850 (D.J.S.), K12GM088020 (J.S.-P.), HL35440 (P.T.S.) and RR025355 (P.T.S.), and DOD contract W81XWH-07-1-0170 (D.J.S.).

Author information

Authors and Affiliations



D.J.S. was responsible for the overall direction of the experiments, analysis of data, construction of figures and communication of the results. J.N.G. and J.S.-P. were responsible for the design and execution of experiments, as well as the analysis of results. D.W. provided expertise on optical approaches. E.I. conducted the immunocytochemical experiments. P.T.S. and J.K. were responsible for the generation of the TH-mito-roGFP mice; they also participated in the design, analysis and communication of the results.

Corresponding author

Correspondence to D. James Surmeier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-7 with legends. (PDF 2278 kb)

Supplementary Movie 1

The movie shows TMRM fluorescence in an SNc dopaminergic neuron before and after bath application of isradipine (5 μM).Note the decreased flickering after application of isradipine. Similar results were seen in all of the neurons examined (n20). (MOV 12251 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guzman, J., Sanchez-Padilla, J., Wokosin, D. et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468, 696–700 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing