Early star-forming galaxies and the reionization of the Universe

Article metrics

Abstract

Star-forming galaxies trace cosmic history. Recent observational progress with the NASA Hubble Space Telescope has led to the discovery and study of the earliest known galaxies, which correspond to a period when the Universe was only 800 million years old. Intense ultraviolet radiation from these early galaxies probably induced a major event in cosmic history: the reionization of intergalactic hydrogen.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cosmic reionization.
Figure 2: Ionizing flux from high-redshift galaxies.
Figure 3: Distant star-forming galaxies and reionization.
Figure 4: Tracing the end of reionization with the Lyα line.

References

  1. 1

    Penzias, A. A. & Wilson, R. W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965)

  2. 2

    Loeb, A. How Did the First Stars and Galaxies Form? (Princeton Univ. Press, 2010)

  3. 3

    Gunn, J. E. & Peterson, B. A. On the density of neutral hydrogen in intergalactic space. Astrophys. J. 142, 1633–1641 (1965)

  4. 4

    Bromm, V., Yoshida, N., Hernquist, L. & McKee, C. F. The formation of the first stars and galaxies. Nature 459, 49–54 (2009)This is an excellent review of the formation of the first stars and galaxies preceding the epoch of reionization.

  5. 5

    Gnedin, N. Y., Kravtsov, A. V. & Chen, H.-W. Escape of ionizing radiation from high-redshift galaxies. Astrophys. J. 672, 765–775 (2008)

  6. 6

    Razoumov, A. O. & Sommer-Larsen, J. Ionizing radiation from z = 4–10 galaxies. Astrophys. J. 710, 1239–1246 (2010)

  7. 7

    Miralda-Escude, J. Reionization of the intergalactic medium and the damping wing of the Gunn-Peterson trough. Astrophys. J. 501, 15–22 (1998)

  8. 8

    Loeb, A. & Rybicki, G. B. Scattered Lyman alpha radiation around sources before cosmological reionisation. Astrophys. J. 524, 527–535 (1999)

  9. 9

    Santos, M. R. Probing reionization with Lyman α emission lines. Mon. Not. R. Astron. Soc. 349, 1137–1152 (2004)

  10. 10

    Malhotra, S. & Rhoads, J. E. Luminosity functions of Lyα emitters at redshifts z = 6.5 and z = 5.7: evidence against reionization at z 6.5. Astrophys. J. 617, L5–L8 (2004)

  11. 11

    Dijkstra, M., Haiman, Z. & Spaans, M. Lyman alpha radiation from collapsing protogalaxies. I. Characteristics of the emergent spectrum. Astrophys. J. 649, 14–36 (2006)

  12. 12

    Zheng, Z., Cen, R., Trac, H. & Miralda-Escude, J. Radiative transfer modelling of Lyman alpha emitters. I. Statistics of spectra and luminosity. Astrophys. J. 716, 574–598 (2010)

  13. 13

    Madau, P., Haardt, F. & Rees, M. J. Radiative transfer in a clumpy universe. III. The nature of cosmological ionizing sources. Astrophys. J. 514, 648–659 (1999)

  14. 14

    Wyithe, J. S. B. & Loeb, A. Reionization of hydrogen and helium by early stars and quasars. Astrophys. J. 586, 693–708 (2003)

  15. 15

    Choudhury, T. R. & Ferrara, A. Experimental constraints on self-consistent reionization models. Mon. Not. R. Astron. Soc. 361, 577–594 (2005)

  16. 16

    Bolton, J. S. & Haehnelt, M. G. The observed reionization rate of the intergalactic medium and the ionizing emissivity at z 5: evidence for a photon-starved and extended epoch of reionization. Mon. Not. R. Astron. Soc. 382, 325–341 (2007)This is a thorough analysis of the ionizing photon budget required for reionization calculated before the new high-redshift HST data was available.

  17. 17

    Miralda-Escude, J., Haehnelt, M. & Rees, M. J. Reionization of the inhomogeneous Universe. Astrophys. J. 530, 1–16 (2000)

  18. 18

    Furlanetto, S. R., Zaldarriaga, M. & Hernquist, L. The growth of H ii regions during reionization. Astrophys. J. 613, 1–15 (2005)

  19. 19

    Gnedin, N. Y. & Fan, X. Cosmic reionization redux. Astrophys. J. 648, 1–6 (2006)

  20. 20

    Iliev, I. T. et al. Simulating cosmic reionization at large scales – I. The geometry of reionization. Mon. Not. R. Astron. Soc. 369, 1625–1638 (2006)

  21. 21

    McQuinn, M. et al. The morphology of H ii regions during reionization. Mon. Not. R. Astron. Soc. 377, 1043–1063 (2007)

  22. 22

    Mesinger, A. & Furlanetto, S. Efficient simulations of early structure formation and reionization. Astrophys. J. 669, 663–675 (2007)

  23. 23

    Trac, H., Cen, R. & Loeb, A. Imprint of inhomogeneous hydrogen reionization on the temperature distribution of the intergalactic medium. Astrophys. J. 689, L81–L84 (2008)

  24. 24

    Aubert, D. & Teyssier, R. A radiative transfer scheme for cosmological reionization based on a local Eddington tensor. Mon. Not. R. Astron. Soc. 387, 295–307 (2008)

  25. 25

    Thomas, R. M. et al. Fast large-scale reionization simulations. Mon. Not. R. Astron. Soc. 393, 32–48 (2009)

  26. 26

    Finlator, K., Ozel, F. & Dave, R. A new moment method for continuum radiative transfer in cosmological reionization. Mon. Not. R. Astron. Soc. 393, 1090–1106 (2009)

  27. 27

    Choudhury, T. R., Haehnelt, M. G. & Regan, J. Inside-out or outside-in: the topology of reionization in the photon-starved regime suggested by Lyα forest data. Mon. Not. R. Astron. Soc. 394, 960–977 (2009)

  28. 28

    Alvarez, M. A., Busha, M., Abel, T. & Wechsler, R. Connecting reionization to the local universe. Astrophys. J. 703, 167–171 (2009)

  29. 29

    Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

  30. 30

    Eyles, L. P. et al. The stellar mass density at z ≈ 6 from Spitzer imaging of i′-drop galaxies. Mon. Not. R. Astron. Soc. 374, 910–930 (2007)

  31. 31

    Stark, D. P., Bunker, A. J., Ellis, R. S., Eyles, L. P. & Lacy, M. A new measurement of the stellar mass density at z 5: implications for the sources of cosmic reionization. Astrophys. J. 659, 84–97 (2007)

  32. 32

    Komatsu, E. et al. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330–376 (2009)

  33. 33

    Fan, X. et al. Evolution of the ionizing background and the epoch of reionization from the spectra of z 6 quasars. Astron. J. 123, 1247–1257 (2002)

  34. 34

    Fan, X., Carilli, C. L. & Keating, B. Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44, 415–462 (2006)

  35. 35

    Becker, G. D., Rauch, M. & Sargent, W. L. W. The evolution of optical depth in the Lyman alpha forest: evidence against reionization at z 6. Astrophys. J. 662, 72–93 (2007)

  36. 36

    Kawai, N. et al. An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295. Nature 440, 184–186 (2006)

  37. 37

    Furlanetto, S. R., Oh, S. P. & Briggs, F. H. Cosmology at low frequencies: the 21 cm transition and the high-redshift universe. Phys. Rep. 433, 181–301 (2006)

  38. 38

    Steidel, C. C., Pettini, M. & Hamilton, D. Lyman limit imaging of high-redshift galaxies. III. New observations of four QSO fields. Astron. J. 110, 2519–2536 (1995)

  39. 39

    McLure, R. J. et al. Galaxies at z = 6–9 from the WFC3/IR imaging of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 403, 960–983 (2010)This is an early analysis of the abundance of z  ≈ 6–9 galaxies and the first combined estimate of the galaxy luminosity function at z  ≈ 7–8, as measured from the first release of HST Wide Field Camera 3 data.

  40. 40

    Bouwens, R. J. et al. Discovery of z 8 galaxies in the Hubble Ultra Deep Field from ultra-deep WFC3/IR observations. Astrophys. J. 709, L133–L137 (2010)

  41. 41

    Oesch, P. A. et al. z 7 galaxies in the HUDF: first epoch WFC3/IR results. Astrophys. J. 709, L16–L20 (2010)This paper gives an initial estimate of the z  ≈ 7 luminosity function from the early-release HST data.

  42. 42

    Bouwens, R. J. et al. Very blue UV-continuum slope β of low luminosity z 7 galaxies from WFC3/IR: evidence for extremely low metallicities? Astrophys. J. 708, L69–L73 (2010)This paper presents the first spectral indication that z  ≈ 7 galaxies contain young, metal-poor and nearly dust-free stellar populations.

  43. 43

    Oesch, P. A. et al. Structure and morphologies of z 7–8 galaxies from ultra-deep WFC3/IR imaging of the Hubble Ultra-Deep Field. Astrophys. J. 709, L21–L25 (2010)

  44. 44

    Bunker, A. et al. The contribution of high redshift galaxies to cosmic reionisation: new results from deep WFC3 imaging of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. (in the press); preprint at 〈http://arxiv.org/abs/0909.2255〉 (2009)

  45. 45

    Yan, H. et al. Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field. Res. Astron. Astrophys. 10, 867 (2010)

  46. 46

    Wilkins, S. M. et al. Probing L* Lyman-break galaxies at z 7 in GOODS-South with WFC3 on HST. Mon. Not. R. Astron. Soc. 403, 938–944 (2010)

  47. 47

    Finkelstein, S. L. et al. On the stellar populations and evolution of star-forming galaxies at 6.3 < z 8.6. Astrophys. J. 719, 1250–1273 (2010)

  48. 48

    Ouchi, M. et al. Large area survey for z = 7 galaxies in SDF and GOODS-N: implications for galaxy formation and cosmic reionization. Astrophys. J. 706, 1136–1151 (2009)

  49. 49

    Gonzalez, V. et al. The stellar mass density and specific star formation rate of the universe at z 7. Astrophys. J. 713, 115–130 (2010)

  50. 50

    Labbe, I., Bouwens, R. J., Illingworth, G. D. & Franx, M. Spitzer IRAC confirmation of z850-dropout galaxies in the Hubble Ultra Deep Field: stellar masses and ages at z 7. Astrophys. J. 649, L67–L70 (2006)This paper reports Spitzer infrared detections of the recent HST candidates at z  ≈ 7 indicating the likelihood of earlier star formation.

  51. 51

    Labbe, I. et al. Ultradeep Infrared Array Camera observations of sub-L* z 7 and z 8 galaxies in the Hubble Ultra Deep Field: the contribution of low-luminosity galaxies to the stellar mass density and reionization. Astrophys. J. 708, L26–L31 (2010)

  52. 52

    Bunker, A., Marleau, F. & Graham, J. R. Seeking the ultraviolet ionizing background at z 3 with the Keck telescope. Astron. J. 116, 2086–2093 (1998)

  53. 53

    Steidel, C., Pettini, M. & Adelberger, K. Lyman-continuum emission from galaxies at z _ 3.4. Astrophys. J. 546, 665–671 (2001)

  54. 54

    Shapley, A. et al. The direct detection of Lyman continuum emission from star-forming galaxies at z 3. Astrophys. J. 651, 688–703 (2006)

  55. 55

    Iwata, I. et al. Detections of Lyman continuum from star-forming galaxies at z 3 through Subaru/Suprime-Cam narrow-band imaging. Astrophys. J. 692, 1287–1293 (2009)

  56. 56

    Schaerer, D. & de Barros, S. The impact of nebular emission on the ages of z ≈ 6 galaxies. Astron. Astrophys. 502, 423–426 (2009)

  57. 57

    Schaerer, D. & de Barros, S. On the physical properties of z 6–8 galaxies. Astron. Astrophys. 515, 73–88 (2010)

  58. 58

    Bouwens, R. J. et al. UV continuum slope and dust obscuration from z 6 to z 2: the star formation rate density at high redshift. Astrophys. J. 705, 936–961 (2009)

  59. 59

    Meurer, G. R., Heckman, T. M. & Calzetti, D. Dust absorption and the ultraviolet luminosity density at z 3 as calibrated by local starburst galaxies. Astrophys. J. 521, 64–80 (1999)

  60. 60

    Bromm, V., Kudritzki, R. P. & Loeb, A. Generic spectrum and ionization efficiency of a heavy initial mass function for the first stars. Astrophys. J. 552, 464–472 (2001)

  61. 61

    Schaerer, D. The transition from population III to normal galaxies: Ly α and He ii emission and the ionising properties of high redshift starburst galaxies. Astron. Astrophys. 397, 527–538 (2003)

  62. 62

    Bouwens, R. J., Illingworth, G. D., Franx, M. & Ford, H. UV luminosity functions at z 4, 5, and 6 from the Hubble Ultra Deep Field and other deep Hubble Space Telescope ACS fields: evolution and star formation history. Astrophys. J. 670, 928–958 (2007)This is a comprehensive analysis of HST data indicating a decrease in the abundance of star-forming galaxies at z  > 4.

  63. 63

    Stark, D. P., Ellis, R. S., Chiu, K., Ouchi, M. & Bunker, A. Keck spectroscopy of faint 3 < z 7 Lyman break galaxies: - I. New constraints on cosmic reionisation from the luminosity and redshift-dependent fraction of Lyman-alpha emission. Mon. Not. R. Astron. Soc (in the press); preprint at 〈http://arxiv.org/abs/1003.5244〉 (2010)This paper discusses the visibility of Lyα line emission in galaxies as a tracer of the end of reionization.

  64. 64

    Iye, M. et al. A galaxy at a redshift z = 6.96. Nature 443, 186–188 (2006)

  65. 65

    Ouchi, M. et al. The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyman-alpha emitters from z = 3.1 to 5.7 in the 1 deg2 field: luminosity functions and AGN. Astrophys. J. Suppl. Ser. 176, 301–330 (2008)

  66. 66

    Kashikawa, N. et al. The end of the reionization epoch probed by Lyman-alpha emitters at z = 6.5 in the Subaru Deep Field. Astrophys. J. 648, 7–22 (2006)This paper contains the first intriguing claim of a decrease in the abundance of Lyα emitters, possibly indicative of the end of the reionization epoch.

  67. 67

    Ouchi, M. et al. Statistics of 207 Lya emitters at a redshift near 7: constraints on reionization and galaxy formation models. Astrophys. J. (in the press); preprint at 〈http://arxiv.org/abs/1007.2961〉 (2010)

  68. 68

    Ota, K. et al. Lyman alpha emitters at z = 7 in the Subaru/XMM-Newton Deep Survey Field: photometric candidates and luminosity function. Astrophys. J. 722, 803 (2010)

  69. 69

    McQuinn, M. et al. Studying reionization with Lyα emitters. Mon. Not. R. Astron. Soc. 381, 75–96 (2007)

  70. 70

    Richard, J. et al. A Hubble and Spitzer Space Telescope survey for gravitationally lensed galaxies: further evidence for a significant population of low-luminosity galaxies beyond z = 7. Astrophys. J. 685, 705–724 (2008)

  71. 71

    Kneib, J.-P., Ellis, R. S., Santos, M. R. & Richard, J. A probable z 7 galaxy strongly lensed by the rich cluster A2218: exploring the dark ages. Astrophys. J. 607, 697–703 (2004)

  72. 72

    Lehnert, M. D. et al. Spectroscopic confirmation of a galaxy at redshift z = 8.6. Nature (in the press)

  73. 73

    Robertson, B. E. Estimating luminosity function constraints from high-redshift galaxy surveys. Astrophys. J. 713, 1266–1281 (2010)This paper presents a statistical formalism for forecasting constraints from high-redshift galaxy surveys that incorporates uncertainty from cosmic variance.

  74. 74

    Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006)

  75. 75

    TMT. Science Advisory Committee. Thirty Meter Telescope Detailed Science Case 2007http://www.tmt.org/sites/default/files/TMT-DSC-2007-R1.pdf〉 (TMT Observatory Corporation, 2007)

  76. 76

    GMTO. Corporation. Giant Magellan Telescope Science Requirementshttp://www.gmto.org/sciencecase/GMT-ID-01405-GMT_Science_Requirements.pdf〉 (Giant Magellan Telescope Organization Corporation, 2006)

  77. 77

    Walter, F. & Carilli, C. Detecting the most distant (z > 7) objects with ALMA. Astrophys. Space Sci. 313, 313–316 (2008)

  78. 78

    Osterbrock, D. E. & Ferland, G. J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei 2nd edn, 67–91 (Univ. Sci. Books, 2006)

  79. 79

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003)

  80. 80

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

  81. 81

    Karzas, W. J. & Latter, R. Electron radiative transitions in a Coulomb field. Astrophys. J. 6 (suppl.). 167–212 (1961)

  82. 82

    Brown, R. L. & Mathews, W. G. Theoretical continuous spectra of gaseous nebulae. Astrophys. J. 160, 939–946 (1970)

  83. 83

    Sutherland, R. S. Accurate free-free Gaunt factors for astrophysical plasmas. Mon. Not. R. Astron. Soc. 300, 321–330 (1998)

  84. 84

    Anders, P. &. Fritze-v. Alvensleben, U. Spectral and photometric evolution of young stellar populations: the impact of gaseous emission at various metallicities. Astron. Astrophys. 401, 1063–1070 (2003)

  85. 85

    Pawlik, A., Schaye, J. & van Scherpenzeel, E. Keeping the Universe ionised: photoheating and the high-redshift clumping factor of the intergalactic medium. Mon. Not. R. Astron. Soc. 394, 1812–1824 (2009)

  86. 86

    Schiminovich, D. et al. The GALEX-VVDS measurement of the evolution of the far-ultraviolet luminosity density and the cosmic star formation rate. Astrophys. J. 619, L47–L50 (2005)

  87. 87

    Reddy, N. A. & Steidel, C. C. A steep faint-end slope of the UV luminosity function at z 2–3: implications for the global stellar mass density and star formation rate in low-mass halos. Astrophys. J. 692, 778–803 (2009)

  88. 88

    Cole, S. et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions. Mon. Not. R. Astron. Soc. 326, 255–273 (2001)

  89. 89

    Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

  90. 90

    Stark, D. P. et al. The evolutionary history of Lyman break galaxies between redshift 4 and 6: observing successive generations of massive galaxies in formation. Astrophys. J. 697, 1493–1511 (2009)

Download references

Acknowledgements

We thank A. Klypin for the use of his cosmological simulation, and A. Loeb, A. Shapley and L. Hernquist for comments. B.E.R. acknowledges support from a Hubble Fellowship. R.S.E. acknowledges the hospitality of Leiden Observatory. J.S.D. acknowledges the support of the Royal Society through a Wolfson Research Merit award, and also the support of the European Research Council through the award of an Advanced Grant. R.J.M. acknowledges the support of the Royal Society through a University Research Fellowship. D.P.S. acknowledges financial support from an STFC postdoctoral research fellowship and a Schlumberger Research Fellowship at Darwin College.

Author information

B.E.R. and R.S.E. wrote the main manuscript text. B.E.R. performed the calculations presented in Box 2 and Figs 13. J.S.D. and R.J.M. prepared and analysed the data presented in Box 3. D.P.S. prepared and analysed the data presented in Fig. 4. All authors reviewed, discussed and commented on the manuscript.

Correspondence to Brant E. Robertson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Robertson, B., Ellis, R., Dunlop, J. et al. Early star-forming galaxies and the reionization of the Universe. Nature 468, 49–55 (2010) doi:10.1038/nature09527

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.