Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early star-forming galaxies and the reionization of the Universe

Abstract

Star-forming galaxies trace cosmic history. Recent observational progress with the NASA Hubble Space Telescope has led to the discovery and study of the earliest known galaxies, which correspond to a period when the Universe was only 800 million years old. Intense ultraviolet radiation from these early galaxies probably induced a major event in cosmic history: the reionization of intergalactic hydrogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cosmic reionization.
Figure 2: Ionizing flux from high-redshift galaxies.
Figure 3: Distant star-forming galaxies and reionization.
Figure 4: Tracing the end of reionization with the Lyα line.

Similar content being viewed by others

References

  1. Penzias, A. A. & Wilson, R. W. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965)

    Article  ADS  Google Scholar 

  2. Loeb, A. How Did the First Stars and Galaxies Form? (Princeton Univ. Press, 2010)

    Book  MATH  Google Scholar 

  3. Gunn, J. E. & Peterson, B. A. On the density of neutral hydrogen in intergalactic space. Astrophys. J. 142, 1633–1641 (1965)

    Article  ADS  CAS  Google Scholar 

  4. Bromm, V., Yoshida, N., Hernquist, L. & McKee, C. F. The formation of the first stars and galaxies. Nature 459, 49–54 (2009)This is an excellent review of the formation of the first stars and galaxies preceding the epoch of reionization.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gnedin, N. Y., Kravtsov, A. V. & Chen, H.-W. Escape of ionizing radiation from high-redshift galaxies. Astrophys. J. 672, 765–775 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Razoumov, A. O. & Sommer-Larsen, J. Ionizing radiation from z = 4–10 galaxies. Astrophys. J. 710, 1239–1246 (2010)

    Article  ADS  Google Scholar 

  7. Miralda-Escude, J. Reionization of the intergalactic medium and the damping wing of the Gunn-Peterson trough. Astrophys. J. 501, 15–22 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Loeb, A. & Rybicki, G. B. Scattered Lyman alpha radiation around sources before cosmological reionisation. Astrophys. J. 524, 527–535 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Santos, M. R. Probing reionization with Lyman α emission lines. Mon. Not. R. Astron. Soc. 349, 1137–1152 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Malhotra, S. & Rhoads, J. E. Luminosity functions of Lyα emitters at redshifts z = 6.5 and z = 5.7: evidence against reionization at z 6.5. Astrophys. J. 617, L5–L8 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Dijkstra, M., Haiman, Z. & Spaans, M. Lyman alpha radiation from collapsing protogalaxies. I. Characteristics of the emergent spectrum. Astrophys. J. 649, 14–36 (2006)

    Article  ADS  Google Scholar 

  12. Zheng, Z., Cen, R., Trac, H. & Miralda-Escude, J. Radiative transfer modelling of Lyman alpha emitters. I. Statistics of spectra and luminosity. Astrophys. J. 716, 574–598 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Madau, P., Haardt, F. & Rees, M. J. Radiative transfer in a clumpy universe. III. The nature of cosmological ionizing sources. Astrophys. J. 514, 648–659 (1999)

    Article  ADS  CAS  Google Scholar 

  14. Wyithe, J. S. B. & Loeb, A. Reionization of hydrogen and helium by early stars and quasars. Astrophys. J. 586, 693–708 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Choudhury, T. R. & Ferrara, A. Experimental constraints on self-consistent reionization models. Mon. Not. R. Astron. Soc. 361, 577–594 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Bolton, J. S. & Haehnelt, M. G. The observed reionization rate of the intergalactic medium and the ionizing emissivity at z 5: evidence for a photon-starved and extended epoch of reionization. Mon. Not. R. Astron. Soc. 382, 325–341 (2007)This is a thorough analysis of the ionizing photon budget required for reionization calculated before the new high-redshift HST data was available.

    Article  ADS  Google Scholar 

  17. Miralda-Escude, J., Haehnelt, M. & Rees, M. J. Reionization of the inhomogeneous Universe. Astrophys. J. 530, 1–16 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Furlanetto, S. R., Zaldarriaga, M. & Hernquist, L. The growth of H ii regions during reionization. Astrophys. J. 613, 1–15 (2005)

    Article  ADS  Google Scholar 

  19. Gnedin, N. Y. & Fan, X. Cosmic reionization redux. Astrophys. J. 648, 1–6 (2006)

    Article  ADS  CAS  Google Scholar 

  20. Iliev, I. T. et al. Simulating cosmic reionization at large scales – I. The geometry of reionization. Mon. Not. R. Astron. Soc. 369, 1625–1638 (2006)

    Article  ADS  CAS  Google Scholar 

  21. McQuinn, M. et al. The morphology of H ii regions during reionization. Mon. Not. R. Astron. Soc. 377, 1043–1063 (2007)

    Article  ADS  CAS  Google Scholar 

  22. Mesinger, A. & Furlanetto, S. Efficient simulations of early structure formation and reionization. Astrophys. J. 669, 663–675 (2007)

    Article  ADS  Google Scholar 

  23. Trac, H., Cen, R. & Loeb, A. Imprint of inhomogeneous hydrogen reionization on the temperature distribution of the intergalactic medium. Astrophys. J. 689, L81–L84 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Aubert, D. & Teyssier, R. A radiative transfer scheme for cosmological reionization based on a local Eddington tensor. Mon. Not. R. Astron. Soc. 387, 295–307 (2008)

    Article  ADS  CAS  Google Scholar 

  25. Thomas, R. M. et al. Fast large-scale reionization simulations. Mon. Not. R. Astron. Soc. 393, 32–48 (2009)

    Article  ADS  Google Scholar 

  26. Finlator, K., Ozel, F. & Dave, R. A new moment method for continuum radiative transfer in cosmological reionization. Mon. Not. R. Astron. Soc. 393, 1090–1106 (2009)

    Article  ADS  CAS  Google Scholar 

  27. Choudhury, T. R., Haehnelt, M. G. & Regan, J. Inside-out or outside-in: the topology of reionization in the photon-starved regime suggested by Lyα forest data. Mon. Not. R. Astron. Soc. 394, 960–977 (2009)

    Article  ADS  Google Scholar 

  28. Alvarez, M. A., Busha, M., Abel, T. & Wechsler, R. Connecting reionization to the local universe. Astrophys. J. 703, 167–171 (2009)

    Article  ADS  Google Scholar 

  29. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Eyles, L. P. et al. The stellar mass density at z ≈ 6 from Spitzer imaging of i′-drop galaxies. Mon. Not. R. Astron. Soc. 374, 910–930 (2007)

    Article  ADS  Google Scholar 

  31. Stark, D. P., Bunker, A. J., Ellis, R. S., Eyles, L. P. & Lacy, M. A new measurement of the stellar mass density at z 5: implications for the sources of cosmic reionization. Astrophys. J. 659, 84–97 (2007)

    Article  ADS  Google Scholar 

  32. Komatsu, E. et al. Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 180, 330–376 (2009)

    Article  ADS  Google Scholar 

  33. Fan, X. et al. Evolution of the ionizing background and the epoch of reionization from the spectra of z 6 quasars. Astron. J. 123, 1247–1257 (2002)

    Article  ADS  Google Scholar 

  34. Fan, X., Carilli, C. L. & Keating, B. Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44, 415–462 (2006)

    Article  ADS  Google Scholar 

  35. Becker, G. D., Rauch, M. & Sargent, W. L. W. The evolution of optical depth in the Lyman alpha forest: evidence against reionization at z 6. Astrophys. J. 662, 72–93 (2007)

    Article  ADS  CAS  Google Scholar 

  36. Kawai, N. et al. An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295. Nature 440, 184–186 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Furlanetto, S. R., Oh, S. P. & Briggs, F. H. Cosmology at low frequencies: the 21 cm transition and the high-redshift universe. Phys. Rep. 433, 181–301 (2006)

    Article  ADS  CAS  Google Scholar 

  38. Steidel, C. C., Pettini, M. & Hamilton, D. Lyman limit imaging of high-redshift galaxies. III. New observations of four QSO fields. Astron. J. 110, 2519–2536 (1995)

    Article  ADS  Google Scholar 

  39. McLure, R. J. et al. Galaxies at z = 6–9 from the WFC3/IR imaging of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 403, 960–983 (2010)This is an early analysis of the abundance of z  ≈ 6–9 galaxies and the first combined estimate of the galaxy luminosity function at z  ≈ 7–8, as measured from the first release of HST Wide Field Camera 3 data.

    Article  ADS  Google Scholar 

  40. Bouwens, R. J. et al. Discovery of z 8 galaxies in the Hubble Ultra Deep Field from ultra-deep WFC3/IR observations. Astrophys. J. 709, L133–L137 (2010)

    Article  ADS  CAS  Google Scholar 

  41. Oesch, P. A. et al. z 7 galaxies in the HUDF: first epoch WFC3/IR results. Astrophys. J. 709, L16–L20 (2010)This paper gives an initial estimate of the z  ≈ 7 luminosity function from the early-release HST data.

    Article  ADS  Google Scholar 

  42. Bouwens, R. J. et al. Very blue UV-continuum slope β of low luminosity z 7 galaxies from WFC3/IR: evidence for extremely low metallicities? Astrophys. J. 708, L69–L73 (2010)This paper presents the first spectral indication that z  ≈ 7 galaxies contain young, metal-poor and nearly dust-free stellar populations.

    Article  ADS  CAS  Google Scholar 

  43. Oesch, P. A. et al. Structure and morphologies of z 7–8 galaxies from ultra-deep WFC3/IR imaging of the Hubble Ultra-Deep Field. Astrophys. J. 709, L21–L25 (2010)

    Article  ADS  Google Scholar 

  44. Bunker, A. et al. The contribution of high redshift galaxies to cosmic reionisation: new results from deep WFC3 imaging of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. (in the press); preprint at 〈http://arxiv.org/abs/0909.2255〉 (2009)

  45. Yan, H. et al. Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field. Res. Astron. Astrophys. 10, 867 (2010)

    Article  ADS  CAS  Google Scholar 

  46. Wilkins, S. M. et al. Probing L* Lyman-break galaxies at z 7 in GOODS-South with WFC3 on HST. Mon. Not. R. Astron. Soc. 403, 938–944 (2010)

    Article  ADS  Google Scholar 

  47. Finkelstein, S. L. et al. On the stellar populations and evolution of star-forming galaxies at 6.3 < z 8.6. Astrophys. J. 719, 1250–1273 (2010)

    Article  ADS  Google Scholar 

  48. Ouchi, M. et al. Large area survey for z = 7 galaxies in SDF and GOODS-N: implications for galaxy formation and cosmic reionization. Astrophys. J. 706, 1136–1151 (2009)

    Article  ADS  CAS  Google Scholar 

  49. Gonzalez, V. et al. The stellar mass density and specific star formation rate of the universe at z 7. Astrophys. J. 713, 115–130 (2010)

    Article  ADS  CAS  Google Scholar 

  50. Labbe, I., Bouwens, R. J., Illingworth, G. D. & Franx, M. Spitzer IRAC confirmation of z850-dropout galaxies in the Hubble Ultra Deep Field: stellar masses and ages at z 7. Astrophys. J. 649, L67–L70 (2006)This paper reports Spitzer infrared detections of the recent HST candidates at z  ≈ 7 indicating the likelihood of earlier star formation.

    Article  ADS  Google Scholar 

  51. Labbe, I. et al. Ultradeep Infrared Array Camera observations of sub-L* z 7 and z 8 galaxies in the Hubble Ultra Deep Field: the contribution of low-luminosity galaxies to the stellar mass density and reionization. Astrophys. J. 708, L26–L31 (2010)

    Article  ADS  Google Scholar 

  52. Bunker, A., Marleau, F. & Graham, J. R. Seeking the ultraviolet ionizing background at z 3 with the Keck telescope. Astron. J. 116, 2086–2093 (1998)

    Article  ADS  CAS  Google Scholar 

  53. Steidel, C., Pettini, M. & Adelberger, K. Lyman-continuum emission from galaxies at z _ 3.4. Astrophys. J. 546, 665–671 (2001)

    Article  ADS  CAS  Google Scholar 

  54. Shapley, A. et al. The direct detection of Lyman continuum emission from star-forming galaxies at z 3. Astrophys. J. 651, 688–703 (2006)

    Article  ADS  CAS  Google Scholar 

  55. Iwata, I. et al. Detections of Lyman continuum from star-forming galaxies at z 3 through Subaru/Suprime-Cam narrow-band imaging. Astrophys. J. 692, 1287–1293 (2009)

    Article  ADS  CAS  Google Scholar 

  56. Schaerer, D. & de Barros, S. The impact of nebular emission on the ages of z ≈ 6 galaxies. Astron. Astrophys. 502, 423–426 (2009)

    Article  ADS  CAS  Google Scholar 

  57. Schaerer, D. & de Barros, S. On the physical properties of z 6–8 galaxies. Astron. Astrophys. 515, 73–88 (2010)

    Article  ADS  MATH  Google Scholar 

  58. Bouwens, R. J. et al. UV continuum slope and dust obscuration from z 6 to z 2: the star formation rate density at high redshift. Astrophys. J. 705, 936–961 (2009)

    Article  ADS  CAS  Google Scholar 

  59. Meurer, G. R., Heckman, T. M. & Calzetti, D. Dust absorption and the ultraviolet luminosity density at z 3 as calibrated by local starburst galaxies. Astrophys. J. 521, 64–80 (1999)

    Article  ADS  CAS  Google Scholar 

  60. Bromm, V., Kudritzki, R. P. & Loeb, A. Generic spectrum and ionization efficiency of a heavy initial mass function for the first stars. Astrophys. J. 552, 464–472 (2001)

    Article  ADS  CAS  Google Scholar 

  61. Schaerer, D. The transition from population III to normal galaxies: Ly α and He ii emission and the ionising properties of high redshift starburst galaxies. Astron. Astrophys. 397, 527–538 (2003)

    Article  ADS  CAS  Google Scholar 

  62. Bouwens, R. J., Illingworth, G. D., Franx, M. & Ford, H. UV luminosity functions at z 4, 5, and 6 from the Hubble Ultra Deep Field and other deep Hubble Space Telescope ACS fields: evolution and star formation history. Astrophys. J. 670, 928–958 (2007)This is a comprehensive analysis of HST data indicating a decrease in the abundance of star-forming galaxies at z  > 4.

    Article  ADS  CAS  Google Scholar 

  63. Stark, D. P., Ellis, R. S., Chiu, K., Ouchi, M. & Bunker, A. Keck spectroscopy of faint 3 < z 7 Lyman break galaxies: - I. New constraints on cosmic reionisation from the luminosity and redshift-dependent fraction of Lyman-alpha emission. Mon. Not. R. Astron. Soc (in the press); preprint at 〈http://arxiv.org/abs/1003.5244〉 (2010)This paper discusses the visibility of Lyα line emission in galaxies as a tracer of the end of reionization.

  64. Iye, M. et al. A galaxy at a redshift z = 6.96. Nature 443, 186–188 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Ouchi, M. et al. The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyman-alpha emitters from z = 3.1 to 5.7 in the 1 deg2 field: luminosity functions and AGN. Astrophys. J. Suppl. Ser. 176, 301–330 (2008)

    Article  ADS  CAS  Google Scholar 

  66. Kashikawa, N. et al. The end of the reionization epoch probed by Lyman-alpha emitters at z = 6.5 in the Subaru Deep Field. Astrophys. J. 648, 7–22 (2006)This paper contains the first intriguing claim of a decrease in the abundance of Lyα emitters, possibly indicative of the end of the reionization epoch.

    Article  ADS  CAS  Google Scholar 

  67. Ouchi, M. et al. Statistics of 207 Lya emitters at a redshift near 7: constraints on reionization and galaxy formation models. Astrophys. J. (in the press); preprint at 〈http://arxiv.org/abs/1007.2961〉 (2010)

  68. Ota, K. et al. Lyman alpha emitters at z = 7 in the Subaru/XMM-Newton Deep Survey Field: photometric candidates and luminosity function. Astrophys. J. 722, 803 (2010)

    Article  ADS  CAS  Google Scholar 

  69. McQuinn, M. et al. Studying reionization with Lyα emitters. Mon. Not. R. Astron. Soc. 381, 75–96 (2007)

    Article  ADS  CAS  Google Scholar 

  70. Richard, J. et al. A Hubble and Spitzer Space Telescope survey for gravitationally lensed galaxies: further evidence for a significant population of low-luminosity galaxies beyond z = 7. Astrophys. J. 685, 705–724 (2008)

    Article  ADS  CAS  Google Scholar 

  71. Kneib, J.-P., Ellis, R. S., Santos, M. R. & Richard, J. A probable z 7 galaxy strongly lensed by the rich cluster A2218: exploring the dark ages. Astrophys. J. 607, 697–703 (2004)

    Article  ADS  CAS  Google Scholar 

  72. Lehnert, M. D. et al. Spectroscopic confirmation of a galaxy at redshift z = 8.6. Nature (in the press)

  73. Robertson, B. E. Estimating luminosity function constraints from high-redshift galaxy surveys. Astrophys. J. 713, 1266–1281 (2010)This paper presents a statistical formalism for forecasting constraints from high-redshift galaxy surveys that incorporates uncertainty from cosmic variance.

    Article  ADS  Google Scholar 

  74. Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006)

    Article  ADS  Google Scholar 

  75. TMT. Science Advisory Committee. Thirty Meter Telescope Detailed Science Case 2007http://www.tmt.org/sites/default/files/TMT-DSC-2007-R1.pdf〉 (TMT Observatory Corporation, 2007)

  76. GMTO. Corporation. Giant Magellan Telescope Science Requirementshttp://www.gmto.org/sciencecase/GMT-ID-01405-GMT_Science_Requirements.pdf〉 (Giant Magellan Telescope Organization Corporation, 2006)

  77. Walter, F. & Carilli, C. Detecting the most distant (z > 7) objects with ALMA. Astrophys. Space Sci. 313, 313–316 (2008)

    Article  ADS  CAS  Google Scholar 

  78. Osterbrock, D. E. & Ferland, G. J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei 2nd edn, 67–91 (Univ. Sci. Books, 2006)

    Google Scholar 

  79. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003)

    Article  ADS  Google Scholar 

  80. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003)

    Article  ADS  Google Scholar 

  81. Karzas, W. J. & Latter, R. Electron radiative transitions in a Coulomb field. Astrophys. J. 6 (suppl.). 167–212 (1961)

    Article  ADS  Google Scholar 

  82. Brown, R. L. & Mathews, W. G. Theoretical continuous spectra of gaseous nebulae. Astrophys. J. 160, 939–946 (1970)

    Article  ADS  CAS  Google Scholar 

  83. Sutherland, R. S. Accurate free-free Gaunt factors for astrophysical plasmas. Mon. Not. R. Astron. Soc. 300, 321–330 (1998)

    Article  ADS  CAS  Google Scholar 

  84. Anders, P. &. Fritze-v. Alvensleben, U. Spectral and photometric evolution of young stellar populations: the impact of gaseous emission at various metallicities. Astron. Astrophys. 401, 1063–1070 (2003)

    Article  ADS  CAS  Google Scholar 

  85. Pawlik, A., Schaye, J. & van Scherpenzeel, E. Keeping the Universe ionised: photoheating and the high-redshift clumping factor of the intergalactic medium. Mon. Not. R. Astron. Soc. 394, 1812–1824 (2009)

    Article  ADS  CAS  Google Scholar 

  86. Schiminovich, D. et al. The GALEX-VVDS measurement of the evolution of the far-ultraviolet luminosity density and the cosmic star formation rate. Astrophys. J. 619, L47–L50 (2005)

    Article  ADS  CAS  Google Scholar 

  87. Reddy, N. A. & Steidel, C. C. A steep faint-end slope of the UV luminosity function at z 2–3: implications for the global stellar mass density and star formation rate in low-mass halos. Astrophys. J. 692, 778–803 (2009)

    Article  ADS  CAS  Google Scholar 

  88. Cole, S. et al. The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions. Mon. Not. R. Astron. Soc. 326, 255–273 (2001)

    Article  ADS  Google Scholar 

  89. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161–167 (1955)

    Article  ADS  Google Scholar 

  90. Stark, D. P. et al. The evolutionary history of Lyman break galaxies between redshift 4 and 6: observing successive generations of massive galaxies in formation. Astrophys. J. 697, 1493–1511 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Klypin for the use of his cosmological simulation, and A. Loeb, A. Shapley and L. Hernquist for comments. B.E.R. acknowledges support from a Hubble Fellowship. R.S.E. acknowledges the hospitality of Leiden Observatory. J.S.D. acknowledges the support of the Royal Society through a Wolfson Research Merit award, and also the support of the European Research Council through the award of an Advanced Grant. R.J.M. acknowledges the support of the Royal Society through a University Research Fellowship. D.P.S. acknowledges financial support from an STFC postdoctoral research fellowship and a Schlumberger Research Fellowship at Darwin College.

Author information

Authors and Affiliations

Authors

Contributions

B.E.R. and R.S.E. wrote the main manuscript text. B.E.R. performed the calculations presented in Box 2 and Figs 13. J.S.D. and R.J.M. prepared and analysed the data presented in Box 3. D.P.S. prepared and analysed the data presented in Fig. 4. All authors reviewed, discussed and commented on the manuscript.

Corresponding author

Correspondence to Brant E. Robertson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, B., Ellis, R., Dunlop, J. et al. Early star-forming galaxies and the reionization of the Universe. Nature 468, 49–55 (2010). https://doi.org/10.1038/nature09527

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09527

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing