Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integrating carbon–halogen bond formation into medicinal plant metabolism

Abstract

Halogenation, which was once considered a rare occurrence in nature, has now been observed in many natural product biosynthetic pathways1. However, only a small fraction of halogenated compounds have been isolated from terrestrial plants2. Given the impact that halogenation can have on the biological activity of natural products1, we reasoned that the introduction of halides into medicinal plant metabolism would provide the opportunity to rationally bioengineer a broad variety of novel plant products with altered, and perhaps improved, pharmacological properties. Here we report that chlorination biosynthetic machinery from soil bacteria can be successfully introduced into the medicinal plant Catharanthus roseus (Madagascar periwinkle). These prokaryotic halogenases function within the context of the plant cell to generate chlorinated tryptophan, which is then shuttled into monoterpene indole alkaloid metabolism to yield chlorinated alkaloids. A new functional group—a halide—is thereby introduced into the complex metabolism of C. roseus, and is incorporated in a predictable and regioselective manner onto the plant alkaloid products. Medicinal plants, despite their genetic and developmental complexity, therefore seem to be a viable platform for synthetic biology efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monoterpene indole alkaloid biosynthesis.
Figure 2: Chlorinated alkaloids in C. roseus hairy root culture.
Figure 3: Extracted LC–MS chromatograms showing the presence of 12-bromo-19,20-dihydroakuammicine in RebF–RebH hairy roots(5c; m/z 403).

Similar content being viewed by others

References

  1. Neumann, C. S., Fujimori, D. G. & Walsh, C. T. Halogenation strategies in natural products biosynthesis. Chem. Biol. 15, 99–109 (2008)

    Article  CAS  Google Scholar 

  2. Gribble, G. W. The diversity of naturally produced organohalogens. Chemosphere 52, 289–297 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Vaillancourt, F. H., Yeh, E., Vosburg, D. A., Garneau-Tsodiova, S. & Walsh, C. T. Nature’s inventory of halogenation catalysts: oxidative strategies predominate. Chem. Rev. 106, 3364–3378 (2006)

    Article  CAS  Google Scholar 

  4. van Pée, K. H. & Patallo, E. P. Flavin-dependent halogenases involved in secondary metabolism in bacteria. Appl. Microbiol. Biotechnol. 70, 631–641 (2006)

    Article  Google Scholar 

  5. Blasiak, L. C. & Drennan, C. L. Structural perspective on enzymatic halogenation. Acc. Chem. Res. 42, 147–155 (2009)

    Article  CAS  Google Scholar 

  6. Zehner, S. et al. A regioselective tryptophan 5-halogenase is involved in pyrroindomycin biosynthesis in Streptomyces rugosporus LL-42D005. Chem. Biol. 12, 445–452 (2005)

    Article  CAS  Google Scholar 

  7. Zhu, X. et al. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. J. Mol. Biol. 391, 74–85 (2009)

    Article  CAS  Google Scholar 

  8. Yeh, E., Garneau, S. & Walsh, C. T. Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proc. Natl Acad. Sci. USA 102, 3960–3965 (2005)

    Article  ADS  CAS  Google Scholar 

  9. Yeh, E. et al. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH. Biochemistry 45, 7904–7912 (2006)

    Article  CAS  Google Scholar 

  10. Yeh, E., Blasiak, L. C., Koglin, A., Drennan, C. L. & Walsh, C. T. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 46, 1284–1292 (2007)

    Article  CAS  Google Scholar 

  11. Bitto, E. et al. The structure of flavin-dependent tryptophan 7-halogenase RebH. Proteins 70, 289–293 (2008)

    Article  CAS  Google Scholar 

  12. Sánchez, C. et al. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc. Natl Acad. Sci. USA 102, 461–466 (2005)

    Article  ADS  Google Scholar 

  13. O’Connor, S. E. & Maresh, J. Chemistry and biology of terpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532–547 (2006)

    Article  Google Scholar 

  14. De Luca, V., Marineau, C. & Brisson, N. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc. Natl Acad. Sci. USA 86, 2582–2586 (1989)

    Article  ADS  CAS  Google Scholar 

  15. McCoy, E. & O’Connor, S. E. Directed biosynthesis of alkaloid analogs in the medicinal plant Catharanthus roseus. J. Am. Chem. Soc. 128, 14276–14277 (2006)

    Article  CAS  Google Scholar 

  16. Bernhardt, P., McCoy, E. & O’Connor, S. E. Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. Chem. Biol. 14, 888–897 (2007)

    Article  CAS  Google Scholar 

  17. Hawkins, K. M. & Smolke, C. D. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chem. Biol. 4, 564–573 (2008)

    Article  CAS  Google Scholar 

  18. Minami, H. et al. Microbial production of plant benzylisoquinoline alkaloids. Proc. Natl Acad. Sci. USA 105, 7393–7398 (2008)

    Article  ADS  CAS  Google Scholar 

  19. De Luca, V. & Cutler, A. J. Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 85, 1099–1102 (1987)

    Article  CAS  Google Scholar 

  20. Hughes, E. H., Hong, S.-B., Shanks, J. V., San, K.-Y. & Gibson, S. I. Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnol. Prog. 18, 1183–1186 (2002)

    Article  CAS  Google Scholar 

  21. Runguphan, W. & O’Connor, S. E. Metabolic reprogramming of periwinkle plant culture. Nature Chem. Biol. 5, 151–153 (2009)

    Article  CAS  Google Scholar 

  22. Loris, E. A. et al. Structure-based engineering of strictosidine synthase: auxiliary for alkaloid libraries. Chem. Biol. 14, 979–985 (2007)

    Article  CAS  Google Scholar 

  23. Menzies, J. R., Paterson, S. J., Duwiejua, M. & Corbett, A. D. Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae). Eur. J. Pharmacol. 350, 101–108 (1998)

    Article  CAS  Google Scholar 

  24. Frédérich, M. et al. Antiplasmodial activity of alkaloids from various strychnos species. J. Nat. Prod. 65, 1381–1386 (2002)

    Article  Google Scholar 

  25. Zhu, W.-M. et al. Components of stem barks of Winchia calophylla A. DC. and their bronchodilator activities. J. Integr. Plant Biol. 47, 892–896 (2005)

    Article  CAS  Google Scholar 

  26. Amat, M., Linares, A. & Bosch, J. A new synthetic entry to pentacyclic Strychnos alkaloids. Total synthesis of (.+−.)-tubifolidine, (.+−.)-tubifoline, and (.+−.)-19,20-dihydroakuammicine. J. Org. Chem. 55, 6299–6312 (1990)

    Article  CAS  Google Scholar 

  27. Gandar, J. C. & Nitsch, C. Isolement de l’ester méthylique d’un acide chloro-3-indolylacétique à partir de graines immatures de pois, Pisum sativum L. C. R. Acad. Sci. (Paris) Ser.. D 265, 1795–1798 (1967)

    CAS  Google Scholar 

  28. Marumo, S., Hattori, H., Abe, H. & Munakata, K. Isolation of 4-chloroindolyl-3-acetic acid from immature seeds of Pisum sativum. Nature 219, 959–960 (1968)

    Article  ADS  CAS  Google Scholar 

  29. Deb Roy, A., Grüschow, S., Cairns, N. & Goss, R. J. Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. J. Am. Chem. Soc. 132, 12243–12245 (2010)

    Article  Google Scholar 

  30. Li, S. et al. Assessment of the therapeutic activity of a combination of almitrine and raubasine on functional rehabilitation following ischaemic stroke. Curr. Med. Res. Opin. 20, 409–415 (2004)

    Article  CAS  Google Scholar 

  31. Hughes, E. H. et al. Characterization of an inducible promoter system in Catharanthus roseus hairy roots. Biotechnol. Prog. 18, 1183–1186 (2002)

    Article  CAS  Google Scholar 

  32. Runguphan, W. et al. Silencing of tryptamine biosynthesis for production of nonnatural alkaloids in plant culture Proc. Natl Acad. Sci. USA 106, 13673–13678 (2009)

    Article  ADS  CAS  Google Scholar 

  33. Schumacher, R. W. et al. Synthesis of didemnolines A-D, N9-substituted β-carboline alkaloids from the marine ascidian Didemnum sp. Tetrahedron 55, 935–942 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the NIH (GM074820) and the American Cancer Society (RSG-07-025-01-CDD). We thank H.-Y. Lee and M. Tjandra for assistance with NMR characterizations and L. Li for high-resolution mass spectroscopy analysis.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to experimental design and data analysis. X.Q. initiated the project and its design, and performed steady-state kinetics. W.R. developed and implemented the transformation strategy and performed steady-state kinetics and metabolite analysis. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Sarah E. O’Connor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-32 with legends and Supplementary Tables 1-2. (PDF 14445 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runguphan, W., Qu, X. & O’Connor, S. Integrating carbon–halogen bond formation into medicinal plant metabolism. Nature 468, 461–464 (2010). https://doi.org/10.1038/nature09524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09524

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing