Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA

Abstract

Bacteria and Archaea have developed several defence strategies against foreign nucleic acids such as viral genomes and plasmids. Among them, clustered regularly interspaced short palindromic repeats (CRISPR) loci together with cas (CRISPR-associated) genes form the CRISPR/Cas immune system, which involves partially palindromic repeats separated by short stretches of DNA called spacers, acquired from extrachromosomal elements. It was recently demonstrated that these variable loci can incorporate spacers from infecting bacteriophages and then provide immunity against subsequent bacteriophage infections in a sequence-specific manner. Here we show that the Streptococcus thermophilus CRISPR1/Cas system can also naturally acquire spacers from a self-replicating plasmid containing an antibiotic-resistance gene, leading to plasmid loss. Acquired spacers that match antibiotic-resistance genes provide a novel means to naturally select bacteria that cannot uptake and disseminate such genes. We also provide in vivo evidence that the CRISPR1/Cas system specifically cleaves plasmid and bacteriophage double-stranded DNA within the proto-spacer, at specific sites. Our data show that the CRISPR/Cas immune system is remarkably adapted to cleave invading DNA rapidly and has the potential for exploitation to generate safer microbial strains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pNT1 proto-spacers.
Figure 2: The CRISPR1/Cas system in S. thermophilus targets incoming plasmid DNA.
Figure 3: The CRISPR1/Cas system targets bacteriophage DNA.

Similar content being viewed by others

References

  1. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987)

    Article  CAS  Google Scholar 

  2. Jansen, R., van Embden, J. D. A., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002)

    Article  CAS  Google Scholar 

  3. Mojica, F. J., Díez-Villaseñor, C., Soria, E. & Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36, 244–246 (2000)

    Article  CAS  Google Scholar 

  4. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005)

    Article  CAS  Google Scholar 

  5. Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60, 174–182 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Pourcel, C., Salvignol, G. & Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151, 653–663 (2005)

    Article  CAS  Google Scholar 

  7. Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science 327, 167–170 (2010)

    Article  ADS  CAS  Google Scholar 

  9. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Horvath, P. et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190, 1401–1412 (2008)

    Article  CAS  Google Scholar 

  12. Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nature Rev. Genet. 11, 181–190 (2010)

    Article  CAS  Google Scholar 

  13. Hale, C. R. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009)

    Article  CAS  Google Scholar 

  14. Lillestøl, R. K. et al. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol. Microbiol. 72, 259–272 (2009)

    Article  Google Scholar 

  15. Pul, U. et al. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol. Microbiol. 75, 1495–1512 (2010)

    Article  CAS  Google Scholar 

  16. Tang, T. H. et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl Acad. Sci. USA 99, 7536–7541 (2002)

    Article  ADS  CAS  Google Scholar 

  17. Carte, J., Wang, R. Y., Li, H., Terns, R. M. & Terns, M. P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008)

    Article  CAS  Google Scholar 

  18. Hale, C., Kleppe, K., Terns, R. M. & Terns, M. P. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14, 2572–2579 (2008)

    Article  CAS  Google Scholar 

  19. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008)

    Article  CAS  Google Scholar 

  21. Turgeon, N. & Moineau, S. Isolation and characterization of a Streptococcus thermophilus plasmid closely related to the pMV158 family. Plasmid 45, 171–183 (2001)

    Article  CAS  Google Scholar 

  22. Somkuti, G. A. & Steinberg, D. H. Distribution and analysis of plasmids in Streptococcus thermophilus. J. Ind. Microbiol. 1, 157–163 (1986)

    Article  CAS  Google Scholar 

  23. Vaillancourt, K. et al. Role of galK and galM in galactose metabolism by Streptococcus thermophilus. Appl. Environ. Microbiol. 74, 1264–1267 (2008)

    Article  CAS  Google Scholar 

  24. Girard, S. L. & Moineau, S. Analysis of two theta-replicating plasmids of Streptococcus thermophilus. Plasmid 58, 174–181 (2007)

    Article  CAS  Google Scholar 

  25. Kiewiet, R., Kok, J., Seegers, J. F., Venema, G. & Bron, S. The mode of replication is a major factor in segregational plasmid instability in Lactococcus lactis. Appl. Environ. Microbiol. 59, 358–364 (1993)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733–740 (2009)

    Article  CAS  Google Scholar 

  27. Lévesque, C. et al. Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl. Environ. Microbiol. 71, 4057–4068 (2005)

    Article  Google Scholar 

  28. Duplessis, M., Russell, W. M., Romero, D. A. & Moineau, S. Global gene expression analysis of two Streptococcus thermophilus bacteriophages using DNA microarray. Virology 340, 192–208 (2005)

    Article  CAS  Google Scholar 

  29. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2001)

    Google Scholar 

  30. Fortier, L.-C. & Moineau, S. Morphological and genetic diversity of temperate phages in Clostridium difficile. Appl. Environ. Microbiol. 73, 7358–7366 (2007)

    Article  CAS  Google Scholar 

  31. Buckley, N. D., Vadeboncoeur, C., LeBlanc, D. J., Lee, L. N. & Frenette, M. An effective strategy, applicable to Streptococcus salivarius and related bacteria, to enhance or confer electroporation competence. Appl. Environ. Microbiol. 65, 3800–3804 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sturino, J. M. & Klaenhammer, T. R. Expression of antisense RNA targeted against Streptococcus thermophilus bacteriophages. Appl. Environ. Microbiol. 68, 588–596 (2002)

    Article  CAS  Google Scholar 

  33. Nieto, C., Fernández de Palencia, P., López, P. & Espinosa, M. Construction of a tightly regulated plasmid vector for Streptococcus pneumoniae: controlled expression of the green fluorescent protein. Plasmid 43, 205–213 (2000)

    Article  CAS  Google Scholar 

  34. Ochman, H., Gerber, A. S. & Hartl, D. L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Clark, J. M. Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases. Nucleic Acids Res. 16, 9677–9686 (1988)

    Article  ADS  CAS  Google Scholar 

  36. Moineau, S. et al. Characterization of lactococcal bacteriophages from Québec cheese plants. Can. J. Microbiol. 38, 875–882 (1992)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. R. Klaenhammer for pTRK687, B. Conway for editorial assistance, D. Tremblay, A. Fleury and B. Stahl for technical assistance. M.-E.D. is the recipient of a Novalait/FQRNT graduate scholarship and A.H.M. of a Clarín/FICYT postdoctoral scholarship. S.M. acknowledges funding from NSERC (Discovery program) and CIHR (Team Grant–Emerging: Novel Alternatives to Antibiotics).

Author information

Authors and Affiliations

Authors

Contributions

S.M. conceived and headed the project. All the authors participated in the design of the study. J.E.G., M.-E.D., M.V. and A.H.M. performed the experiments. J.E.G. and S.M. wrote the main parts of the manuscript. All of the authors analysed the results and commented on the manuscript.

Corresponding author

Correspondence to Sylvain Moineau.

Ethics declarations

Competing interests

[Competing interests: D.A.R., R.B., P.B., C.F. and P.H. have submitted patent applications relating to various uses of CRISPR.]

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-2 with legends and Supplementary Tables 1-3. (PDF 506 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garneau, J., Dupuis, MÈ., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010). https://doi.org/10.1038/nature09523

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09523

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing