Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deformation of the lowermost mantle from seismic anisotropy


The lowermost part of the Earth’s mantle—known as D″—shows significant seismic anisotropy, the variation of seismic wave speed with direction1,2,3,4,5. This is probably due to deformation-induced alignment of MgSiO3-post-perovskite (ppv), which is believed to be the main mineral phase present in the region. If this is the case, then previous measurements of D″ anisotropy, which are generally made in one direction only, are insufficient to distinguish candidate mechanisms of slip in ppv because the mineral is orthorhombic. Here we measure anisotropy in D″ beneath North and Central America, where material from subducting oceanic slabs impinges6 on the core–mantle boundary, using shallow as well as deep earthquakes to increase the azimuthal coverage in D″. We make more than 700 individual measurements of shear wave splitting in D″ in three regions from two different azimuths in each case. We show that the previously assumed2,3,7 case of vertical transverse isotropy (where wave speed shows no azimuthal variation) is not possible, and that more complicated mechanisms must be involved. We test the fit of different MgSiO3-ppv deformation mechanisms to our results and find that shear on (001) is most consistent with observations and the expected shear above the core–mantle boundary beneath subduction zones. With new models of mantle flow, or improved experimental determination of the dominant ppv slip systems, this method will allow us to map deformation at the core–mantle boundary and link processes in D″, such as plume initiation, to the rest of the mantle.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Source–receiver geometry, and explanation of ϕ
Figure 2: Multi-azimuth stacked shear wave splitting results in each region.
Figure 3: Section through study region and compatible shear planes for candidate ppv slip systems.


  1. Kendall, J.-M. & Silver, P. Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Kendall, J.-M. & Silver, P. G. in The Core–Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 97–118 (American Geophysical Union, 1998)

    Book  Google Scholar 

  3. Lay, T., Williams, Q., Garnero, E. J., Kellogg, L. & Wysession, M. E. in The Core–Mantle Boundary Region (eds Gurnis, M., Wysession, M. E., Knittle, E. & Buffett, B. A.) 299–318 (American Geophysical Union, 1998)

    Book  Google Scholar 

  4. Maupin, V., Garnero, E. J., Lay, T. & Fouch, M. J. Azimuthal anisotropy in the D″ layer beneath the Caribbean. J. Geophys. Res. Solid Earth 110, B08301 (2005)

    Article  ADS  Google Scholar 

  5. Long, M. D. Complex anisotropy in D″ beneath the eastern Pacific from SKS–SKKS splitting discrepancies. Earth Planet. Sci. Lett. 283, 181–189 (2009)

    Article  ADS  CAS  Google Scholar 

  6. Ren, Y., Stutzman, E., van der Hilst, R. D. & Besse, J. Understanding seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. J. Geophys. Res. Solid Earth 112, B01302 (2007)

    Article  ADS  Google Scholar 

  7. Kendall, J.-M. & Nangini, C. Lateral variations in D″ below the Caribbean. Geophys. Res. Lett. 23, 399–402 (1996)

    Article  ADS  Google Scholar 

  8. Garnero, E. J., Maupin, V., Lay, T. & Fouch, M. J. Variable azimuthal anisotropy in Earth’s lowermost mantle. Science 306, 259–261 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Rokosky, J. M., Lay, T. & Garnero, E. J. Small-scale lateral variations in azimuthally anisotropic D″ structure beneath the Cocos plate. Earth Planet. Sci. Lett. 248, 411–425 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Wookey, J. & Kendall, J.-M. Constraints on lowermost mantle mineralogy and fabric beneath Siberia from seismic anisotropy. Earth Planet. Sci. Lett. 275, 32–42 (2008)

    Article  ADS  CAS  Google Scholar 

  11. Wookey, J., Kendall, J.-M. & Rumpker, G. Lowermost mantle anisotropy beneath the north Pacific from differential S–ScS splitting. Geophys. J. Int. 161, 829–838 (2005)

    Article  ADS  Google Scholar 

  12. Meade, C., Silver, P. & Kaneshima, S. Laboratory and seismological observations of lower mantle isotropy. Geophys. Res. Lett. 22, 1293–1296 (1995)

    Article  ADS  Google Scholar 

  13. Karki, B., Wentzcovitch, R., de Gironcoli, S. & Baroni, S. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science 286, 1705–1707 (1999)

    Article  CAS  Google Scholar 

  14. Long, M. D., Xiao, X., Jiang, Z., Evans, B. & Karato, S. Lattice preferred orientation in deformed polycrystalline (Mg,Fe)O and implications for seismic anisotropy in D″. Phys. Earth Planet. Inter. 156, 75–88 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Yamazaki, D. & Karato, S. Fabric development in (Mg,Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Phys. Earth Planet. Inter. 131, 251–267 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Merkel, S. et al. Deformation of (Mg,Fe)SiO3 post-perovskite and D″ anisotropy. Science 316, 1729–1732 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Merkel, S. et al. Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311, 644–646 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Oganov, A., Martonak, R., Laio, A., Raiteri, P. & Parrinello, M. Anisotropy of Earth’s D″ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Carrez, P., Ferré, D. & Cordier, P. Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature 446, 68–70 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J. & Yoneda, A. Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet. Sci. Lett. 252, 372–378 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Iitaka, T., Hirose, K., Kawamura, K. & Murakami, M. The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 430, 442–445 (2004)

    Article  ADS  CAS  Google Scholar 

  22. Okada, T., Yagi, T., Niwa, K. & Kikegawa, T. Lattice-preferred orientations in post-perovskite-type MgGeO3 formed by transformations from different pre-phases. Phys. Earth Planet. Inter. 180, 195–202 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Stackhouse, S., Brodholt, J. P., Wookey, J., Kendall, J.-M. & Price, G. D. The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3 . Earth Planet. Sci. Lett. 230, 1–10 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Tsuchiya, T., Tsuchiya, J., Umemoto, K. & Wentzcovitch, R. Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet. Sci. Lett. 224, 241–248 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Wookey, J., Stackhouse, S., Kendall, J.-M., Brodholt, J. P. & Price, G. D. Efficacy of the post-perovskite phase as an explanation for lowermost-mantle seismic properties. Nature 438, 1004–1007 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Wookey, J. & Kendall, J.-M. in Post-Perovksite: The Last Mantle Phase Transition (eds Hirose, K., Brodholt, J., Lay, T. & Yuen, D.) 171–189 (American Geophysical Union, 2007)

    Book  Google Scholar 

  27. Wentzcovitch, R., Tsuchiya, T. & Tsuchiya, J. MgSiO3 postperovskite at D″ conditions. Proc. Natl Acad. Sci. USA 103, 543–546 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Blackman, D. et al. Teleseismic imaging of subaxial flow at mid-ocean ridges: traveltime effects of anisotropic mineral texture in the mantle. Geophys. J. Int. 127, 415–426 (1996)

    Article  ADS  Google Scholar 

  29. McNamara, A., van Keken, P. & Karato, S. Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. J. Geophys. Res. Solid Earth 108, 2230 (2003)

    Article  ADS  Google Scholar 

  30. Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928 (1999)

    Article  CAS  Google Scholar 

  31. Evans, M., Kendall, J.-M. & Willemann, R. Automated SKS splitting and upper-mantle anisotropy beneath Canadian seismic stations. Geophys. J. Int. 165, 931–942 (2006)

    Article  ADS  Google Scholar 

  32. Wuestefeld, A., Bokelmann, G., Barruol, G. & Montagner, J.-P. Identifying global seismic anisotropy patterns by correlating shear-wave splitting and surface-wave data. Phys. Earth Planet. Inter. 176, 198–212 (2009)

    Article  ADS  Google Scholar 

  33. Silver, P. & Chan, W. W. Shear-wave splitting and subcontinental mantle deformation. J. Geophys. Res. Solid Earth 96, 16429–16454 (1991)

    Article  Google Scholar 

  34. Wolfe, C. & Silver, P. Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations. J. Geophys. Res. Solid Earth 103, 749–771 (1998)

    Article  Google Scholar 

  35. Teanby, N., Kendall, J. M. & der Baan, M. V. Automation of shear-wave splitting measurements using cluster analysis. Bull. Seismol. Soc. Am. 94, 453–463 (2004)

    Article  Google Scholar 

  36. Frederiksen, A. W. et al. Lithospheric variations across the Superior Province, Ontario, Canada: evidence from tomography and shear wave splitting. J. Geophys. Res. Solid Earth 112, B07318 (2007)

    Article  ADS  Google Scholar 

  37. Wolfe, C. & Solomon, S. Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific Rise. Science 280, 1230–1232 (1998)

    Article  ADS  CAS  Google Scholar 

Download references


We thank J. Brodholt and D. Dobson for comments. A.N. was supported by NERC. Seismic data were provided by I. Bastow, D. Thompson, and the IRIS and CNSN data centres.

Author information

Authors and Affiliations



A.N. analysed the data and produced the manuscript and figures. J.W. wrote the analysis and modelling code and performed the modelling. J.W. and J-M.K. supervised the analysis and commented on the manuscript and figures. All authors discussed the results and implications at all stages.

Corresponding author

Correspondence to Andy Nowacki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Results and Discussion, Supplementary Figures 1-14 with legends, Supplementary Tables 1-6 and additional references. (PDF 6965 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nowacki, A., Wookey, J. & Kendall, JM. Deformation of the lowermost mantle from seismic anisotropy. Nature 467, 1091–1094 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing