Quantum gravitational contributions to quantum electrodynamics

Article metrics

Abstract

Quantum electrodynamics describes the interactions of electrons and photons. Electric charge (the gauge coupling constant) is energy dependent, and there is a previous claim that charge is affected by gravity (described by general relativity) with the implication that the charge is reduced at high energies. However, that claim has been very controversial and the matter has not been settled. Here I report an analysis (free from the earlier controversies) demonstrating that quantum gravity corrections to quantum electrodynamics have a quadratic energy dependence that result in the electric charge vanishing at high energies, a result known as asymptotic freedom.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Gross, D. & Wilczek, F. Ultraviolet behavior of non-Abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

  2. 2

    Politzer, D. Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)

  3. 3

    Callan, C. G. Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541–1547 (1970)

  4. 4

    Symanzik, K. Small distance behaviour in field theory and power counting. Commun. Math. Phys. 18, 227–246 (1970)

  5. 5

    ‘t. Hooft, G. & Veltman, M. One-loop divergences in the theory of gravitation. Ann. Inst. Henri Poincaré A 20, 69–94 (1974)

  6. 6

    Deser, S. & van Nieuwenhuizen, P. Nonrenormalizability of the quantized Einstein-Maxwell system. Phys. Rev. Lett. 32, 245–247 (1974)

  7. 7

    Deser, S. & van Nieuwenhuizen, P. One-loop divergences of quantized Einstein-Maxwell fields. Phys. Rev. D 10, 401–410 (1974)

  8. 8

    Deser, S. & van Nieuwenhuizen, P. Nonrenormalizability of the quantized Dirac-Einstein system. Phys. Rev. D 10, 411–420 (1974)

  9. 9

    Deser, S., Tsao, H. & van Nieuwenhuizen, P. One-loop divergences of the Einstein-Yang-Mills system. Phys. Rev. D 10, 3337–3342 (1974)

  10. 10

    Donoghue, J. F. Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 72, 2996–2999 (1994)

  11. 11

    Donoghue, J. F. General relativity as an effective field theory: the leading quantum corrections. Phys. Rev. D 50, 3874–3888 (1994)

  12. 12

    Burgess, C. P. Quantum gravity in everyday life: general relativity as an effective field theory. Living Rev. Relativityhttp://www.livingreviews.org/lrr-2004-5〉 (2004)

  13. 13

    Robinson, S. P. & Wilczek, F. Gravitational correction to running of gauge couplings. Phys. Rev. Lett. 96, 231601 (2006)

  14. 14

    Gogoladze, I. & Cheung, C. N. Probing the gravitational scale via running gauge couplings. Phys. Lett. B 645, 451–454 (2007)

  15. 15

    Pietrykowski, A. R. Gauge dependence of gravitational correction to running of gauge couplings. Phys. Rev. Lett. 98, 061801 (2007)

  16. 16

    Vilkovisky, G. A. The unique effective action in quantum field theory. Nucl. Phys. B 234, 125–137 (1984)

  17. 17

    DeWitt, B. S. in Quantum Field Theory and Quantum Statistics Vol. 1 (eds Batalin, I. A., Isham, C. J. & Vilkovisky, G. A.) 191–222 (Hilger, 1987)

  18. 18

    ‘t. Hooft, G. & Veltman, M. Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)

  19. 19

    Toms, D. J. Quantum gravity and charge renormalization. Phys. Rev. D 76, 045015 (2007)

  20. 20

    Ebert, D., Plefka, J. & Rodigast, A. Absence of gravitational contributions to the running Yang-Mills coupling. Phys. Lett. B 660, 579–582 (2008)

  21. 21

    Tang, Y. & Wu, Y.-L. Gravitational contributions to the running of gauge couplings. Preprint at 〈http://arxiv.org/abs/0807.0331〉 (2008)

  22. 22

    Toms, D. J. Cosmological constant and quantum gravitational corrections to the running fine structure constant. Phys. Rev. Lett. 101, 131301 (2008)

  23. 23

    Toms, D. J. Quantum gravity, gauge coupling constants, and the cosmological constant. Phys. Rev. D 80, 064040 (2009)

  24. 24

    Ebert, D., Plefka, J. & Rodigast, A. Gravitational contributions to the running Yang-Mills coupling in large extra-dimensional brane worlds. J. High Energy Phys. 02, 028 (2009)

  25. 25

    Rodigast, A. & Schuster, T. Gravitational corrections to Yukawa and ϕ4 interactions. Phys. Rev. Lett. 104, 081301 (2010)

  26. 26

    Mackay, P. T. & Toms, D. J. Quantum gravity and scalar fields. Phys. Lett. B 684, 251–255 (2010)

  27. 27

    Daum, J.-E., Harst, U. & Reuter, M. Running gauge coupling in asymptotically safe quantum gravity. J. High Energy Phys. 01, 084 (2010)

  28. 28

    Shaposhnikov, M. & Wetterich, C. Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 683, 196–200 (2010)

  29. 29

    Zanusso, O., Zambelli, L., Vacca, G. P. & Percacci, R. Gravitational corrections to Yukawa systems. Phys. Lett. B 689, 90–94 (2010)

  30. 30

    Schwinger, J. S. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

  31. 31

    DeWitt, B. S. The Dynamical Theory of Groups and Fields (Gordon and Breach, 1965)

  32. 32

    Fradkin, E. S. & Tseytlin, A. A. On the new definition of off-shell effective action. Nucl. Phys. B 234, 509–523 (1984)

  33. 33

    Parker, L. E. & Toms, D. J. Quantum Field Theory in Curved Spacetime (Cambridge Univ. Press, 2009)

  34. 34

    Toms, D. J. Background-field method and the renormalization of non-Abelian gauge theories in curved space-time. Phys. Rev. D 27, 1803–1813 (1983)

  35. 35

    Gilkey, P. B. The spectral geometry of a Riemannian manifold. J. Diff. Geom. 10, 601–618 (1975)

  36. 36

    Barvinsky, A. O. & Vilkovisky, G. A. The generalized Schwinger-DeWitt technique in gauge theories and quantum gravity. Phys. Rep. 119, 1–74 (1985)

  37. 37

    Toms, D. J. Renormalization of interacting scalar field theories in curved space-time. Phys. Rev. D 26, 2713–2729 (1982)

  38. 38

    Bunch, T. S. & Parker, L. Feynman propagator in curved spacetime: a momentum-space representation. Phys. Rev. D 20, 2499–2510 (1979)

  39. 39

    Peeters, K. Cadabra: a field-theory motivated symbolic computer algebra system. Comput. Phys. Commun. 176, 550–558 (2007)

  40. 40

    Spergel, D. N. et al. Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. Ser. 170, 377–408 (2007)

  41. 41

    Arkani-Hamed, N., Dimopoulos, S. & Dvali, G. R. The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998)

  42. 42

    Arkani-Hamed, N., Motl, L., Nicolis, A. & Vafa, C. The string landscape, black holes and gravity as the weakest force. J. High Energy Phys. 06, 060 (2007)

  43. 43

    Huang, Q. Gravitational correction and weak gravity conjecture. J. High Energy Phys. 03, 053 (2007)

Download references

Author information

Correspondence to David J. Toms.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toms, D. Quantum gravitational contributions to quantum electrodynamics. Nature 468, 56–59 (2010) doi:10.1038/nature09506

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.