Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme

Abstract

Vitamin K occurs in the natural world in several forms, including a plant form, phylloquinone (PK), and a bacterial form, menaquinones (MKs). In many species, including humans, PK is a minor constituent of hepatic vitamin K content, with most hepatic vitamin K content comprising long-chain MKs. Menaquinone-4 (MK-4) is ubiquitously present in extrahepatic tissues, with particularly high concentrations in the brain, kidney and pancreas of humans and rats1,2,3. It has consistently been shown that PK is endogenously converted to MK-4 (refs 4–8). This occurs either directly within certain tissues or by interconversion to menadione (K3), followed by prenylation to MK-4 (refs 9–12). No previous study has sought to identify the human enzyme responsible for MK-4 biosynthesis. Previously we provided evidence for the conversion of PK and K3 into MK-4 in mouse cerebra13. However, the molecular mechanisms for these conversion reactions are unclear. Here we identify a human MK-4 biosynthetic enzyme. We screened the human genome database for prenylation enzymes and found UbiA prenyltransferase containing 1 (UBIAD1), a human homologue of Escherichia coli prenyltransferase menA. We found that short interfering RNA against the UBIAD1 gene inhibited the conversion of deuterium-labelled vitamin K derivatives into deuterium-labelled-MK-4 (MK-4-d7) in human cells. We confirmed that the UBIAD1 gene encodes an MK-4 biosynthetic enzyme through its expression and conversion of deuterium-labelled vitamin K derivatives into MK-4-d7 in insect cells infected with UBIAD1 baculovirus. Converted MK-4-d7 was chemically identified by 2H-NMR analysis. MK-4 biosynthesis by UBIAD1 was not affected by the vitamin K antagonist warfarin. UBIAD1 was localized in endoplasmic reticulum and ubiquitously expressed in several tissues of mice. Our results show that UBIAD1 is a human MK-4 biosynthetic enzyme; this identification will permit more effective decisions to be made about vitamin K intake and bone health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conversion activities of deuterium-labelled vitamins K.
Figure 2: Conversion activity of UBIAD1 in MG-63 cells.
Figure 3: MK-4 biosynthetic activity of UBIAD1 in Sf9 cells and effects of warfarin on MK-4 biosynthesis.
Figure 4: Subcellular localization of UBIAD1 in MG-63 cells, UBIAD1 activity in microsomes from UBIAD1 baculovirus-infected Sf9 cells, and scheme of UBIAD1 activity.

Similar content being viewed by others

References

  1. Shearer, M. J., McCarthy, P. T., Crampton, O. E. & Mattock, M. B. in Current Advances in Vitamin K Research (ed. Suttie, J. W.) 437–452 (Elsevier, 1988)

    Google Scholar 

  2. Thijssen, H. H. W. & Drittij-Reijnders, M. J. Vitamin K distribution in rat tissues: dietary phylloquinone is a source of tissue menaquinone-4. Br. J. Nutr. 72, 415–425 (1994)

    Article  CAS  Google Scholar 

  3. Thijssen, H. H. W. & Drittij-Reijnders, M. J. Vitamin K status in human tissues: tissue-specific accumulation of phylloquinone and menaquinone-4. Br. J. Nutr. 75, 121–127 (1996)

    Article  CAS  Google Scholar 

  4. Martius, C. & Esser, H. O. Über die Konstitution des im Tierkörper aus Methylnaphthochinon gebildeten K-Vitamines. Biochem. Z. 331, 1–9 (1958)

    CAS  PubMed  Google Scholar 

  5. Billeter, M. & Martius, C. Über die umwandlung von phyllochinon (vitamin K1) in vitamin K2 (20) in tierkörper. Biochem. Z. 333, 430–439 (1960)

    CAS  Google Scholar 

  6. Martius, C. The metabolic relationships between the different K vitamins and the synthesis of the ubiquinones. Am. J. Clin. Nutr. 9, 97–103 (1961)

    Article  CAS  Google Scholar 

  7. Guillaumont, M. et al. Hepatic concentration of vitamin K active compounds after application of phylloquinone to chickens on a vitamin K deficient or adequate diet. Int. J. Vitam. Nutr. Res. 62, 15–20 (1992)

    CAS  PubMed  Google Scholar 

  8. Thijssen, H. H. W., Drittij-Reijnders, M. J. & Fischer, M. A. J. G. Phylloquinone and menaquinone-4 distribution in rats: synthesis rather than uptake determines menaquinone-4 organ concentrations. J. Nutr. 126, 537–543 (1996)

    Article  CAS  Google Scholar 

  9. Shearer, M. J. & Newman, P. Metabolism and cell biology of vitamin K. Thromb. Haemost. 100, 530–547 (2008)

    Article  CAS  Google Scholar 

  10. Dialameh, G. H., Yekundi, K. G. & Olson, R. E. Enzymatic alkylation of menaquinone-0 to menaquinones by microsomes from chick liver. Biochim. Biophys. Acta 223, 332–338 (1970)

    Article  CAS  Google Scholar 

  11. Ronden, J. E., Drittij-Reijnders, M. J., Vermeer, C. & Thijssen, H. H. Intestinal flora is not an intermediate in the phylloquinone–menaquinone-4 conversion in the rat. Biochim. Biophys. Acta 1379, 69–75 (1998)

    Article  CAS  Google Scholar 

  12. Davidson, R. T., Foley, A. L., Engelke, J. A. & Suttie, J. W. Conversion of dietary phylloquinone to tissue menaquinone-4 in rats is not dependent on gut bacteria. J. Nutr. 128, 220–223 (1998)

    Article  CAS  Google Scholar 

  13. Okano, T. et al. Conversion of phylloquinone (vitamin K1) into menaquinone-4 (vitamin K2) in mice: two possible routes for menaquinone-4 accumulation in cerebra of mice. J. Biol. Chem. 283, 11270–11279 (2008)

    Article  CAS  Google Scholar 

  14. Suttie, J. W. in Present Knowledge in Nutrition 7th edn (eds Ziegler, E. E. & Filer, L. J. Jr) 137–145 (ILSI Press, 1996)

    Google Scholar 

  15. Tabb, M. M. et al. Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J. Biol. Chem. 278, 43919–43927 (2003)

    Article  CAS  Google Scholar 

  16. Ichikawa, T., Horie-Inoue, K., Ikeda, K., Blumberg, B. & Inoue, S. Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J. Biol. Chem. 281, 16927–16934 (2006)

    Article  CAS  Google Scholar 

  17. Igarashi, M. et al. Vitamin K induces osteoblast differentiation through pregnane X receptor-mediated transcriptional control of the Msx2 gene. Mol. Cell. Biol. 27, 7947–7954 (2007)

    Article  CAS  Google Scholar 

  18. Booth, S. L. & Suttie, J. W. Dietary intake and adequacy of vitamin K. J. Nutr. 128, 785–788 (1998)

    Article  CAS  Google Scholar 

  19. Thijssen, H. H., Vervoort, L. M., Schurgers, L. J. & Shearer, M. J. Menadione is a metabolite of oral vitamin K. Br. J. Nutr. 95, 260–266 (2006)

    Article  CAS  Google Scholar 

  20. Wallace, B. J. & Young, I. G. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA menA double quinone mutant. Biochim. Biophys. Acta 461, 84–100 (1977)

    Article  CAS  Google Scholar 

  21. Lin, E. C. C. & Kuritzkes, D. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 202–221 (American Society for Microbiology, 1987)

    Google Scholar 

  22. Meganathan, R. in Escherichia coli and Salmonella: Cellular and Molecular Biology 2nd edn (eds Neidhardt, F. C. et al.) 642–656 (American Society for Microbiology, 1996)

    Google Scholar 

  23. Suvarna, K., Stevenson, D., Meganathan, R. & Hudspeth, M. E. S. Menaquinone (vitamin K2) biosynthesis: localization and characterization of the menA gene from Escherichia coli. J. Bacteriol. 180, 2782–2787 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  24. López-Martín, J. M. et al. Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum. Mol. Genet. 16, 1091–1097 (2007)

    Article  Google Scholar 

  25. Suhara, Y., Wada, A. & Okano, T. Elucidation of the mechanism producing menaquinone-4 in osteoblastic cells. Bioorg. Med. Chem. Lett. 19, 1054–1057 (2009)

    Article  CAS  Google Scholar 

  26. Taggart, W. V. & Matschiner, J. T. Metabolism of menadione-6,7-3H in the rat. Biochemistry 8, 1141–1146 (1969)

    Article  CAS  Google Scholar 

  27. Spronk, H. M. et al. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J. Vasc. Res. 40, 531–537 (2003)

    Article  CAS  Google Scholar 

  28. Orr, A. et al. Mutations in the UBIAD1 gene, encoding a potential prenyltransferase, are causal for Schnyder crystalline corneal dystrophy. PLoS ONE 2, e685 (2007)

    Article  ADS  Google Scholar 

  29. Weiss, J. S. et al. Mutations in the UBIAD1 gene on chromosome short arm 1, region 36, cause Schnyder crystalline corneal dystrophy. Invest. Ophthalmol. Vis. Sci. 48, 5007–5012 (2007)

    Article  Google Scholar 

  30. Weiss, J. S. et al. Genetic analysis of 14 families with Schnyder crystalline corneal dystrophy reveals clues to UBIAD1 protein function. Am. J. Med. Genet. A 146, 271–283 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Sugiura and A. Takeuchi for technical support with 2H-NMR analysis and LC-APCI-MS/MS analysis. This work was supported in part by priority areas from the Ministry of Education, Culture, Sports, Science and Technology (to K.N. and T.O.).

Author information

Authors and Affiliations

Authors

Contributions

K.N. and T.O. planned the project and analysed the experiments, together with Y.H., N.S., N.Y., M.W., Y.U., N.O., Y.S. and Y.S. The manuscript was written by K.N. and T.O., and all authors commented on it.

Corresponding author

Correspondence to Toshio Okano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-8 with legends. (PDF 230 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, K., Hirota, Y., Sawada, N. et al. Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468, 117–121 (2010). https://doi.org/10.1038/nature09464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09464

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing